BITSAT 2018 PAPER (memory based)

PHYSICS

1. A rifle man, who together with his rifle has a mass of 100 kg , stands on a smooth surface and fires 10 shots horizontally. Each bullet has a mass 10 g and a muzzle velocity of $800 \mathrm{~ms}^{-1}$. The velocity which the rifle man attains after firing 10 shots is
(a) $8 \mathrm{~ms}^{-1}$
(b) $0.8 \mathrm{~ms}^{-1}$
(c) $0.08 \mathrm{~ms}^{-1}$
(d) $-0.8 \mathrm{~ms}^{-1}$
2. A train accelerating uniformly from rest attains a maximum speed of $40 \mathrm{~ms}^{-1}$ in 20 s . It travels at the speed for 20 s and is brought to rest with uniform retardation in further 40 s . What is the average velocity during the period ?
(a) $80 \mathrm{~m} / \mathrm{s}$
(b) $25 \mathrm{~m} / \mathrm{s}$
(c) $40 \mathrm{~m} / \mathrm{s}$
(d) $30 \mathrm{~m} / \mathrm{s}$
3. A projectile is fired with a velocity u making an angle θ with the horizontal. What is the magnitude of change in velocity when it is at the highest point -
(a) $u \cos \theta$
(b) u
(c) $u \sin \theta$
(d) $u \cos \theta-u$
4. For the equation $F=A^{a} v^{b} d^{c}$, where F is the force, A is the area, v is the velocity and d is the density, the values of a, b and c are respectively
(a) 1,2, 1
(b) 2, 1, 1
(c) $1,1,2$ (d)
$0,1,1$
5. A person with his hand in his pocket is skating on ice at the rate of $10 \mathrm{~m} / \mathrm{s}$ and describes a circle
of radius 50 m . What is his inclination to vertical: ($\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}$)
(a) $\tan ^{-1}(1 / 2)$
(b) $\tan ^{-1}(1 / 5)$
(c) $\tan ^{-1}(3 / 5)$
(d) $\tan ^{-1}(1 / 10)$
6. A small block of mass m is kept on a rough inclined surface of inclination θ fixed in a elevator. The elevator goes up with a uniform velocity v and the block does not slide on the wedge. The work done by the force of friction on the block in time t will be :
(a) zero
(b) mgvt $\cos ^{2} \theta$
(c) mgvt $\sin ^{2} \theta$
(d) $m g v t \sin 2 \theta$
7. An equilateral prism of mass m rests on a rough horizontal surface with coefficient of friction μ. A horizontal force F
 is applied on the prism as shown in the figure. If the coefficient of friction is sufficiently high so that the prism does not slide before toppling, then the minimum force required to topple the prism is -
(a) $\frac{\mathrm{mg}}{\sqrt{3}}$
(b) $\frac{\mathrm{mg}}{4}$
(c) $\frac{\mu \mathrm{mg}}{\sqrt{3}}$
(d) $\frac{\mu m g}{4}$
8. A spherically symmetric gravitational system of particles has a mass density $\rho=\left\{\begin{array}{l}\rho_{0} \text { for } r \leq R \\ 0 \text { for } r>R\end{array}\right.$
where r_{0} is a constant. A test mass can undergo
circular motion under the influence of the gravitational field of particles. Its speed V as a function of distance $r(0<r<\infty)$ from the centre of the system is represented by
(a)

(b)

(c)

(d)

9. The load versus elongation graph for four wires is shown. The thinnest wire is

(a) P
(b) Q
(c) R
(d) S
10. The work done in blowing a soap bubble of surface tension $0.06 \times \mathrm{Nm}^{-1}$ from 2 cm radius to 5 cm radius is
(a) 0.004168 J
(b) 0.003168 J
(c) 0.003158 J
(d) 0.004568 J
11. The wavelength of radiation emitted by a body depends upon
(a) the nature of its surface
(b) the area of its surface
(c) the temperature of its surface
(d) All of the above
12. One mole of O_{2} gas having a volume equal to 22.4 Litres at $0^{\circ} \mathrm{C}$ and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process is-
(a) 1672.5 J
(b) 1728 J
(c) -1728 J
(d) -1572.5 J
13. In a thermodynamic process, the pressure of a fixed mass of a gas is changed in such a manner that the gas releases 20 J of heat and 8 J of work is done on the gas. If the initial internal energy of the gas was 30 J , then the final internal energy will be
(a) 2 J
(b) 42 J
(c) 18 J
(d) 58 J
14. In the kinetic theory of gases, which of these statements is/are true?
(i) The pressure of a gas is proportional to the mean speed of the molecules.
(ii) The root mean square speed of the molecules is proportional to the pressure.
(iii) The rate of diffusion is proportional to the mean speed of the molecules.
(iv) The mean translational kinetic energy of a gas is proportional to its kelvin temperature.
(a) (ii) and (iii) only
(b) (i), (ii) and (iv) only
(c) (i) and (iii) only
(d) (iii) and (iv) only
15. Two balloons are filled one with pure he gas and other with air respectively. If the pressure and temperature of these balloons are same, then the number of molecules per unit volume is
(a) more in He gas filled balloon
(b) same in both balloons
(c) more in air filled balloon
(d) in the ratio 1:4
16. Two particles P and Q describe S.H.M. of same amplitude a, same frequency f along the same straight line. The maximum distance between the two particles is $\mathrm{a} \sqrt{2}$.
The initial phase difference between the particle is -
(a) zero
(b) $\pi / 2$
(c) $\pi / 6$
(d) $\pi / 3$
17. A tunnel has been dug through the centre of the earth and a ball is released in it. It executes S.H.M. with time period
(a) 42 minutes
(b) 1 day
(c) 1 hour
(d) 84.6 minutes
18. A sound source, emitting sound of constant frequency, moves with a constant speed and crosses a stationary observer. The frequency (n) of sound heard by the observer is plotted against time (t). Which of the following graphs represents the correct variation?
(a)

(b)

(c)

(d)

19. When a string is divided into three segments of length l_{1}, l_{2}, and l_{3} the fundamental frequencies of these three segments are v_{1}, v_{2} and v_{3} respectively. The original fundamental frequency (v) of the string is
(a) $\sqrt{v}=\sqrt{v_{1}}+\sqrt{v_{2}}+\sqrt{v_{3}}$
(b) $v=v_{1}+v_{2}+v_{3}$
(c) $\frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}}+\frac{1}{v_{3}}$.
(d) $\frac{1}{\sqrt{v}}=\frac{1}{\sqrt{v_{1}}}+\frac{1}{\sqrt{v_{2}}}+\frac{1}{\sqrt{v_{3}}}$
20. Two point dipoles $\mathrm{p} \hat{\mathrm{k}}$ and $\frac{\mathrm{p}}{2} \hat{\mathrm{k}}$ are located at $(0,0,0)$ and ($1 \mathrm{~m}, 0,2 \mathrm{~m}$) respectively. The resultant electric field due to the two dipoles at the point $(1 \mathrm{~m}, 0,0)$ is
(a) $\frac{9 \mathrm{p}}{32 \pi \epsilon_{0}} \hat{\mathrm{k}}$
(b) $\frac{-7 \mathrm{p}}{32 \pi \epsilon_{0}} \hat{\mathrm{k}}$
(c) $\frac{7 \mathrm{p}}{32 \pi \epsilon_{0}} \hat{\mathrm{k}}$
(d) None of these
21. Electric field in the region is given by $E=\left(\frac{M}{x^{3}}\right) \hat{i}$, then the correct expression for the potential in the region is [assume potential at infinity is zero]
(a) $\frac{M}{2 x^{2}}$
(b) Mx^{2}
(c) $\frac{M}{3 x^{4}}$
(d) $\frac{\mathrm{M}}{\mathrm{x}^{2}}$
22. Three capacitors $\mathrm{C}_{1}=1 \mu \mathrm{~F}, \mathrm{C}_{2}=2 \mu \mathrm{~F}$ and $\mathrm{C}_{3}=3$ $\mu \mathrm{F}$ are connected as shown in figure, then the equivalent capacitance between points A and B is

(a) $3 \mu \mathrm{~F}$
(b) $4 \mu \mathrm{~F}$
(c) $5 \mu \mathrm{~F}$
(d) $6 \mu \mathrm{~F}$
23. Two long coaxial and conducting cylinders of radius a and b are separated by a material of conductivity σ and a constant potential difference V is maintained between them, by a battery. Then the current, per unit length of the cylinder flowing from one cylinder to the other is -
(a) $\frac{4 \pi \sigma}{\ln (b / a)} V$
(b) $\frac{4 \pi \sigma}{(b+a)} V$
(c) $\frac{2 \pi \sigma}{\ln (\mathrm{~b} / \mathrm{a})} \mathrm{V}$
(d) $\frac{2 \pi \sigma}{(b+a)} V$
24. A wire X is half the diameter and half the length of a wire Y of similar material. The ratio of resistance of X to that of Y is
(a) $8: 1$
(b) $4: 1$
(c) $2: 1$
(d) $1: 1$
25. A narrow beam of protons and deuterons, each having the same momentum, enters a region of uniform magnetic field directed perpendicular to their direction of momentum. The ratio of the radii of the circular paths described by them is
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) $1: 3$
26. For the circuit (figure), the current is to be measured. The ammeter shown is a galvanometer with a resistance $R_{G}=60.00 \Omega$ converted to an ammeter by a shunt resistance $\mathrm{r}_{\mathrm{s}}=0.02 \Omega$. The value of the current is

(a) 0.79 A
(b) 0.29 A
(c) 0.99 A
(d) 0.8 A
27. The susceptibility of a magnetism at 300 K is 1.2×10^{-5}. The temperature at which the susceptibility increases to 1.8×10^{-5} is
(a) 150 K
(b) 200 K
(c) 250 K
(d) 20 K
28. A coil 10 turns and a resistance of 20Ω is connected in series with B.G. of resistance 30Ω. The coil is placed with its plane perpendicular to the direction of a uniform magnetic field of induction $10^{-2} \mathrm{~T}$. If it is now turned through an angle of 60° about an axis in its plane. Find the charge induced in the coil. (Area of a coil $=10^{-2} \mathrm{~m}^{2}$)
(a) $2 \times 10^{-5} \mathrm{C}$
(b) $3.2 \times 10^{-5} \mathrm{C}$
(c) $1 \times 10^{-5} \mathrm{C}$
(d) $5.5 \times 10^{-5} \mathrm{C}$
29. Voltage V and current i in AC circuit are given by $V=50 \sin (50 t)$ volt, $i=50 \sin \left(50 t+\frac{\pi}{3}\right) m A$.
The power dissipated in the circuit is
(a) 5.0 W
(b) 2.5 W
(c) 1.25 W
(d) zero
30. Resolving power of the telescope will be more, if the diameter of the objective is
(a) larger
(b) smaller
(c) it does not depends on diameter
(d) None of these
31. The magnifying power of a telescope is 9 . When it is adjusted for parallel rays, the distance between the objective and the eye piece is found to be 20 cm . The focal length of lenses are
(a) $18 \mathrm{~cm}, 2 \mathrm{~cm}$
(b) $11 \mathrm{~cm}, 9 \mathrm{~cm}$
(c) $10 \mathrm{~cm}, 10 \mathrm{~cm}$
(d) $15 \mathrm{~cm}, 5 \mathrm{~cm}$
32. The angular size of the central maxima due to a single slit diffraction is ($\mathrm{a} \rightarrow$ slit width)
(a) $\frac{\lambda}{\mathrm{a}}$
(b) $\frac{2 \lambda}{\mathrm{a}}$
(c) $\frac{3 \lambda}{2 \mathrm{a}}$
(d) $\frac{\lambda}{2 a}$
33. Find the final intensity of light (I'), if the angle between the axes of two polaroids is 60°.

(a) $\frac{3 \mathrm{I}_{0}}{2}$
(b) $\frac{\mathrm{I}_{0}}{2}$
(c) $\frac{\mathrm{I}_{0}}{4}$
(d) $\frac{\mathrm{I}_{0}}{8}$
34. The threshold wavelength of the tungsten is 2300 \AA. If ultraviolet light of wavelength $1800 \AA$ is incident on it, then the maximum kinetic energy of photoelectrons would be about -
(a) 1.49 eV
(b) 2.2 eV
(c) 3.0 eV
(d) 5.0 eV
35. Graph betwen stopping potential for most energetic emitted photoelectrons $\left(\mathrm{V}_{\mathrm{s}}\right)$ with frequency (v) of incident radiation on metal is given below. Value of $A B / B C$, in graph is [where $\mathrm{h}=$ plank's constant, $\mathrm{e}=$ electronic charge]

(a) h
(b) e
(c) h / e
(d) e / h
36. If hydrogen atom, an electron jumps from bigger orbit to smaller orbit so that radius of smaller orbit is one-fourth of radius of bigger orbit. If speed of electron in bigger orbit was v, then speed in smaller orbit is
(a) $\frac{\mathrm{V}}{4}$
(b) $\frac{\mathrm{V}}{2}$
(c) v
(d) 2 v
37. A nucleus of uranium decays at rest into nuclei of thorium and helium. Then :
(a) the helium nucleus has less momentum than the thorium nucleus
(b) the helium nucleus has more momentum than the thorium nucleus
(c) the helium nucleus has less kinetic energy than the thorium nucleus
(d) the helium nucleus has more kinetic energy than the thorium nucleus
38. Let binding energy per nucleon of nucleus is denoted by E_{bn} and radius of nucleus is denoted as r. If mass number of nuclei A, B and 64 and 125 respectively then
(a) $\mathrm{r}_{\mathrm{A}}<\mathrm{r}_{\mathrm{B}}, \mathrm{E}_{\mathrm{bnA}}<\mathrm{E}_{\mathrm{bnB}}$
(b) $\mathrm{r}_{\mathrm{A}}>\mathrm{r}_{\mathrm{B}}, \mathrm{E}_{\mathrm{bnA}}>\mathrm{E}_{\mathrm{bnB}}$
(c) $\mathrm{r}_{\mathrm{A}}=\frac{4}{5} \mathrm{r}_{\mathrm{B}}, \mathrm{E}_{\mathrm{bnA}}<\mathrm{E}_{\mathrm{bnB}}$
(d) $\mathrm{r}_{\mathrm{A}}<\mathrm{r}_{\mathrm{B}}, \mathrm{E}_{\mathrm{bnA}}>\mathrm{E}_{\mathrm{bnB}}$
39. For a CE transistor amplifier, the audio signal voltage across the collector resistance of $2.0 \mathrm{k} \Omega$ is 2.0 V . Suppose the current amplification factor of the transistor is 100 , What should be the value of R_{B} in series with $V_{B B}$ supply of 2.0 V if the dc base current has to be 10 times the signal current?
(a) $14 \mathrm{k} \Omega$
(b) $18 \mathrm{k} \Omega$
(c) $10 \mathrm{k} \Omega$
(d) $5 \mathrm{k} \Omega$
40. The combination of gates shown below yields

(a) OR gate
(b) NOT gate
(c) XOR gate
(d) NAND gate

CHEMISTRY

41. The formation of CO and CO_{2} illustrates the law of
(a) reciprocal proportion
(b) conservation of mass
(c) multiple proportion
(d) constant composition
42. The wave number of the limiting line in Lyman series of hydrogen is $109678 \mathrm{~cm}^{-1}$. The wave number of the limiting line in Balmer series of He^{+} would be :
(a) $54839 \mathrm{~cm}^{-1}$
(b) $109678 \mathrm{~cm}^{-1}$
(c) $219356 \mathrm{~cm}^{-1}$
(d) $438712 \mathrm{~cm}^{-1}$
43. The valency shell of element A contains 3 electrons while the valency shell of element B contains 6 electrons. If A combines with B, the probable formula of the compound formed will be
(a) AB_{2}
(b) $\mathrm{A}_{2} \mathrm{~B}$
(c) $\mathrm{A}_{2} \mathrm{~B}_{3}$
(d) $\mathrm{A}_{3} \mathrm{~B}_{2}$
44. The enthalpy of sublimation of aluminium is 330 $\mathrm{kJ} / \mathrm{mol}$. Its $\mathrm{I}^{\mathrm{st}}, \mathrm{II}^{\text {nd }}$ and $\mathrm{III}^{\text {rd }}$ ionization enthalpies are 580,1820 and 2740 kJ respectively. How much heat has too be supplied (in kJ) to convert 13.5 g of aluminium into Al^{3+} ions and electrons at 298 k
(a) 5470
(b) 2735
(c) 4105
(d) 3765
45. Which one of the following pairs is isostructural (i.e., having the same shape and hybridization)?
(a) $\left[\mathrm{BCl}_{3}\right.$ and $\left.\mathrm{BrCl}_{3}^{-}\right]$
(b) $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$
(c) $\left[\mathrm{NF}_{3}\right.$ and $\left.\mathrm{BF}_{3}\right]$
(d) $\left[\mathrm{BF}_{4}^{-}\right.$and $\left.\mathrm{NH}_{4}^{+}\right]$
46. N_{2} and O_{2} are converted into mono anions, N_{2}^{-} and O_{2}^{-}respectively. Which of the following statements is wrong?
(a) In N_{2}, the $\mathrm{N}-\mathrm{N}$ bond weakens
(b) In O_{2}, the $\mathrm{O}-\mathrm{O}$ bond order increases
(c) In O_{2}, bond length decreases
(d) N_{2}^{-}becomes diamagnetic
47. If the enthalpy of vaporization of water is 186.5 kJmol^{-1}, the entropy if its vaporization will be :
(a) $0.5 \mathrm{k} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(b) $1.0 \mathrm{k} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(c) $1.5 \mathrm{k} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(d) $2.0 \mathrm{k} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
48. The heats of neutralisation of $\mathrm{CH}_{3} \mathrm{COOH}$, $\mathrm{HCOOH}, \mathrm{HCN}$ and $\mathrm{H}_{2} \mathrm{~S}$ are - 13.2, - 13.4, - 2.9 and -3.8 kCal per equivalent respectively. Arrange the acids in increasing order of acidic strength.
(a) $\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{HCN}$
(b) $\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCOOH}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{HCN}$
(c) $\mathrm{H}_{2} \mathrm{~S}>\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCN}$
(d) $\mathrm{HCOOH}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCN}$
49. K_{c} for the the reaction, $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \rightleftharpoons \mathrm{Ag}^{+}+2 \mathrm{CN}^{-}$, the equillibrium constant at $25^{\circ} \mathrm{C}$ is 4.0×10^{-19}, then the silver ion concentration in a solution
which was originally 0.1 molar in KCN and 0.03 molar in AgNO_{3} is :
(a) 7.5×10^{18}
(b) 7.5×10^{-19}
(c) 7.5×10^{19}
(d) 7.5×10^{-18}
50. The ratio of oxidation states of Cl in potassium chloride to that in potassium chlorate is
(a) $\frac{+1}{5}$
(b) $\frac{-1}{5}$
(c) $\frac{-2}{5}$
(d) $\frac{+3}{5}$
51. Which of the following among alkali metal is most reactive?
(a) Na
(b) K
(c) Rb
(d) Cs
52. Which of the following compounds has wrong IUPAC name?
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COO}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ \rightarrow Ethyl butanoate
(b)

\rightarrow 3-Methyl-butanal
(c)

(d)

\rightarrow 2-Methyl-3-pentanone
53. The compound which gives the most stable carbonium ion on dehydration is
(a) $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
(c) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}$
54. The correct order of increasing $\mathrm{C}-\mathrm{O}$ bond length $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is:
(a) $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$
(b) $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
(c) $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
(d) $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{3}<\mathrm{CO}$
55. An organic compound $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right)$ on reaction with Na /diethyl ether gives a hydrocarbon which on monochlorination gives only one chloro derivative, then A is
(a) tert-butyl chloride
(b) sec-butyl chloride
(c) isobutyl chloride
(d) n-butyl chloride
56. When rain is accompanied by a thunderstorm, the collected rain water will have a pH value:
(a) Slightly lower than that of rain water without thunderstorm.
(b) Slightly higher than that when the thunderstorm is not there.
(c) Uninfluenced by occurrence of thunderstorm.
(d) Which depends upon the amount of dust in air.
57. An elemental crystal has a density of $8570 \mathrm{~kg} / \mathrm{m}^{3}$. The packing efficiency is 0.68 . The closest distance of approach between neighbouring atom is $2.86 \AA$. What is the mass of one atom approximately?
(a) 93 amu
(b) 39 amu
(c) 63 amu
(d) 29 amu
58. Identify the correct order of solubilty of $\mathrm{Na}_{2} \mathrm{~S}$. CuS and ZnS in aqueous medium
(a) $\mathrm{CuS}>\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}$
(b) $\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}>\mathrm{CuS}$
(c) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{ZnS}$
(d) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{ZnS}>\mathrm{CuS}$
59. In the cell reaction
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$, $\mathrm{E}^{0}{ }_{\text {cell }}=0.46 \mathrm{~V}$. By doubling the concentration of $\mathrm{Cu}^{2+}, \mathrm{E}_{\text {cell }}^{0}$ is
(a) doubled
(b) halved
(c) increases but less than double
(d) decreases by a small fraction
60. $\mathrm{Cu}_{\mathrm{aq}}^{+}$is unstable in solution and undergoes simultaneous oxidation and reduction according to the reaction :
$2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
choose correct E^{0} for above reaction if

$$
\mathrm{E}_{\mathrm{Cu}}^{\circ}{ }^{2+}=0.34 \mathrm{~V}_{\mathrm{Cu}} \mathrm{E}^{\circ}{ }^{2+}=0.15 \mathrm{~V}
$$

(a) -0.38 V
(b) +0.49 V
(c) +0.38 V
(d) -0.19 V
61. The reduction of peroxydisulphate ion by I^{-}ion is expressed by $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+3 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}^{2-}+\mathrm{I}_{3}^{-}$. If rate of disappearance of I^{-}is $9 / 2 \times 10^{-3} \mathrm{~mol} \mathrm{lit}^{-1}$ s^{-1}, what is the rate of formation of $2 \mathrm{SO}_{4}^{2-}$ during same time?
(a) $3 \times 10^{-3} \mathrm{~mol} \mathrm{Lit}^{-1} \mathrm{~s}^{-1}$
(b) $2 \times 10^{-3} \mathrm{~mol} \mathrm{Lit}^{-1} \mathrm{~s}^{-1}$
(c) $10^{-3} \mathrm{~mol} \mathrm{Lit}^{-1} \mathrm{~s}^{-1}$
(d) $4 \times 10^{-3} \mathrm{~mol} \mathrm{Lit}^{-1} \mathrm{~s}^{-1}$
62. A gaseous reaction $X_{2}(\mathrm{~g}) \longrightarrow Y+\frac{1}{2} Z(g)$ There is increase in pressure from 100 mm to 120 mm in 5 minutes. The rate of disappearance of X_{2} is
(a) $8 \mathrm{~mm} \mathrm{~min}^{-1}$
(b) $2 \mathrm{~mm} \mathrm{~min}^{-1}$
(c) $16 \mathrm{~mm} \mathrm{~min}^{-1}$
(d) $4 \mathrm{~mm} \mathrm{~min}^{-1}$
63. Two substances R and S decompose in solution independently, both following first order kinetics. The rate constant of R is twice that of S. In an experiment, the solution initially contained 0.5 millimoles of R and 0.25 of S. The molarities of R and S will be equal just at the end of time equal to
(a) twice the half life of R
(b) twice the half life of S
(c) the halflife of S
(d) the half life of R
64. The isoelectric-point of a colloidially dispersed material is the pH value at which
(a) the dispersed phase migrate in an electric field.
(b) the dispersed phase does not migrate in an electric field.
(c) the dispersed phase has pH equal to 7 .
(d) the dispersed phase has pH equal to zero.
65. Which of the following halogens exhibit only one oxidation state in its compounds?
(a) Bromine
(b) Chlorine
(c) Fluorine
(d) Iodine
66. Starch can be used as an indicator for the detection of traces of
(a) glucose in aqueous solution
(b) proteins in blood
(c) iodine in aqueous solution
(d) urea in blood
67. Which one of the following arrangements represents the correct order of electron gain enthalpy (with negative sign) of the given atomic species?
(a) S $<$ O $<\mathrm{Cl}<$ F
(b) Cl $<$ F $<$ S $<$ O
(c) F $<\mathrm{Cl}<\mathrm{O}<$ S
(d) O $<$ S $<$ F $<$ Cl
68. Which form coloured salts :
(a) Non-metals
(b) Metals
(c) p-block elements
(d) Transitional elements
69. The correct order of magnetic moments (spin only values in B.M.) is:
(a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
(b) $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
(c) $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{MnCl}_{4}\right]^{2-}$
(Atomic nos. : $\mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$)
70. The number of double bonds in gammexane is :
(a) 0
(b) 1
(c) 2
(d) 3
71.

P and Q are isomers. Identify Q .
(a)

(b)

(c)

(d)

72. Consider the following phenols :

(I)

(II)

(III)

(IV)

The decreasing order of acidity of the above phenols is
(a) III $>$ IV $>$ II $>$ I
(b) II $>$ I $>$ IV $>$ III
(c) I $>$ IV $>$ II $>$ III
(d) III $>$ IV $>$ I $>$ II
73. The ionization constant of phenol is higher than that of ethanol because :
(a) Phenoxide ion is bulkier than ethoxide
(b) Phenoxide ion is stronger base than ethoxide
(c) Phenoxide ion is stabilized through delocalization
(d) Phenoxide ion is less stable than ethoxide
74. The reaction,

is known as:
(a) Wurtz reaction
(b) Koch reaction
(c) Clemmensen reduction
(d) Kolbe's reaction
75. Aniline reacts with phosgene and KOH to form
(a)

(b)

(c)

(d)

76. Which one of the following monomers gives the polymer neoprene on polymerization?
(a) $\mathrm{CF}_{2}=\mathrm{CF}_{2}$
(b) $\mathrm{CH}_{2}=\mathrm{CHCl}$
(c) $\mathrm{CCl}_{2}=\mathrm{CCl}_{2}$
(d)

77. Which of the following can possibly be used as analgesic without causing addiction and modification?
(a) morphine
(b) N-acetyl-para-aminophenol
(c) diazepam
(d) tetrahydrocatenol
78. Which among the following is not an antibiotic?
(a) Penicillin
(b) Oxytocin
(c) Ofloxacin
(d) Tetracycline
79. Which of the following ions can be separated by aq. $\mathrm{NH}_{4} \mathrm{OH}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$
(a) Al^{3+} and Fe^{3+}
(b) Cr^{3+} and Al^{3+}
(c) Cu^{2+} and Al^{3+}
(d) None of these
80. 3.92 g of ferrous ammonium sulphate react completely with $50 \mathrm{ml} \frac{\mathrm{N}}{10} \mathrm{KMnO}_{4}$ solution. The percentage purity of the sample is
(a) 50
(b) 78.4
(c) 80
(d) 39.2

MATHEMATICS

81. The set $(A \backslash B) \cup(B \backslash A)$ is equal tol
(a) $\quad[A \backslash(A \cap B)] \cap[B \backslash(A \cap B)]$
(b) $(A \cup B) \backslash(A \cap B)$
(c) $A \backslash(A \cap B)$
(d) $\overline{A \cap B} \backslash A \cup B$
82. The domain of the function $f(x)=\log _{2}\left(-\log _{1 / 2}\left(1+\frac{1}{x^{1 / 4}}\right)-1\right)$ is
(a) $(0,1)$
(b) $(0,1]$
(c) $[1, \infty)$
(d) $(1, \infty)$
83. $\cos ^{2}\left(\frac{\pi}{6}+\theta\right)-\sin ^{2}\left(\frac{\pi}{6}-\theta\right)=$
(a) $\frac{1}{2} \cos 2 \theta$
(b) 0
(c) $-\frac{1}{2} \cos 2 \theta$
(d) $\frac{1}{2}$
84. The solution of $(2 \cos x-1)(3+2 \cos x)=0$ in the interval $0 \leq x \leq 2 \pi$ is
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{3}, \frac{5 \pi}{3}$
(c) $\frac{\pi}{3}, \frac{5 \pi}{3}, \cos ^{-1}\left(-\frac{3}{2}\right)$
(d) None of these
85. $2^{3 n}-7 n-1$ is divisible by
(a) 64
(b) 36
(c) 49
(d) 25
86. The greatest positive integer, which divides $\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)$ for all $\mathrm{n} \in \mathbf{N}$, is
(a) 2
(b) 6
(c) 24
(d) 120
87. If $z=x+i y, \mathrm{z}^{1 / 3}=a-i b$, then $\frac{x}{a}-\frac{y}{b}=k\left(a^{2}-b^{2}\right)$ where k is equal to
(a) 1
(b) 2
(c) 3
(d) 4
88. $i^{57}+\frac{1}{i^{25}}$, when simplified has the value
(a) 0
(b) $2 i$
(c) $-2 i$
(d) 2
89. The complex number $z=z+i y$ which satisfies the equation $\left|\frac{z-3 i}{z+3 i}\right|=1$, lies on
(a) the X-axis
(b) the straight line $y=3$
(c) a circle passing through origin
(d) None of the above
90. The number of all three elements subsets of the set $\left\{a_{1}, a_{2}, a_{3} \ldots a_{n}\right\}$ which contain a_{3} is
(a) ${ }^{n} C_{3}$
(b) ${ }^{\mathrm{n}-{ }^{1}} \mathrm{C}_{3}$
(c) ${ }^{\mathrm{n}-1} \mathrm{C}_{2}$
(d) None of these
91. In how many ways can a committee of 5 made out 6 men and 4 women containing atleast one woman?
(a) 246
(b) 222
(c) 186
(d) None of these
92. The coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$, is
(a) 440
(b) 770
(c) 990
(d) 1001
93. If $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2} \ldots . . \mathrm{T}_{\mathrm{n}}$ represent the terms in the expansion of $(x+a)^{n}$, then $\left(\mathrm{T}_{0}-\mathrm{T}_{2}+\mathrm{T}_{4}-\ldots . . .\right)^{2}+$ $\left(\mathrm{T}_{1}-\mathrm{T}_{3}+\mathrm{T}_{5}-\ldots . .\right)^{2}=$
(a) $\left(x^{2}+a^{2}\right)$
(b) $\left(x^{2}+a^{2}\right)^{n}$
(c) $\left(x^{2}+a^{2}\right)^{1 / n}$
(d) $\left(x^{2}+a^{2}\right)^{-1 / n}$
94. If the $(2 p)^{\text {th }}$ term of a H.P. is q and the $(2 q)^{\text {th }}$ term is p, then the $2(p+q)^{\text {th }}$ term is-
(a) $\frac{p q}{2(p+q)}$
(b) $\frac{2 p q}{p+q}$
(c) $\frac{p q}{p+q}$
(d) $\frac{p+q}{p q}$
95. If $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are in A. P., then $\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}-\frac{1}{\mathrm{c}}\right)$ $\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{\mathrm{a}}\right)$ is equal to
(a) $\frac{4}{\mathrm{ac}}-\frac{3}{\mathrm{~b}^{2}}$
(b) $\frac{b^{2}-a c}{a^{2} b^{2} c^{2}}$
(c) $\frac{4}{\mathrm{ac}}-\frac{1}{\mathrm{~b}^{2}}$
(d) None of these
96. The product of n positive numbers is unity, then their sum is:
(a) a positive integer
(b) divisible by n
(c) equal to $n+\frac{1}{n}$
(d) never less than n
97. If P_{1} and P_{2} be the length of perpendiculars from the origin upon the straight lines $x \sec \theta+y \operatorname{cosec} \theta$ $=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$ respectively, then the value of $4 \mathrm{P}_{1}{ }^{2}+\mathrm{P}_{2}{ }^{2}$.
(a) a^{2}
(b) $2 a^{2}$
(c) $a^{2} / 2$
(d) $3 a^{2}$
98. The angle of intersection of the two circles $x^{2}+y^{2}-2 x-2 y=0$ and $x^{2}+y^{2}=4$, is
(a) 30°
(b) 60°
(c) 90°
(d) 45°
99. An arch of a bridge is semi-elliptical with major axis horizontal. If the length the base is 9 meter and the highest part of the bridge is 3 meter from the horizontal; the best approximation of the height of the arch. 2 meter from the centre of the base is
(a) $11 / 4 \mathrm{~m}$
(b) $8 / 3 \mathrm{~m}$
(c) $7 / 2 \mathrm{~m}$
(d) 2 m
100. $\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}$ is equal to :
(a) 0
(b) 1
(c) $\frac{1}{e}$
(d) None of these
101. If M. D. is 12 , the value of S.D. will be
(a) 15
(b) 12
(c) 24
(d) None of these
102. A bag contains 5 brown and 4 white socks. A man pulls out 2 socks. Find the probability that they are of the same colour.
(a) $\frac{4}{9}$
(b) $\frac{2}{9}$
(c) $\frac{5}{9}$
(d) $\frac{7}{9}$
103. Let $R=\{(3,3),(6,6),(9,9),(12,12),(6,12)$, $(3,9),(3,12),(3,6)\}$ be a relation on the set $A=\{3,6,9,12\}$. Then, the relation is
(a) an equivalence relation
(b) reflexive and symmetric
(c) reflexive and transitive
(d) only reflexive
104. Let $f: R \rightarrow R$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$, then
(a) f is one-one onto
(b) f is one-one into
(c) fis many-one onto
(d) fis many-one into
105. Find the value of $\tan \left[2 \tan ^{-1} \frac{1}{5}-\frac{\pi}{4}\right]$
(a) $-1 / 3$
(b) $-7 / 17$
(c) $-1 / 2$
(d) $-1 / 4$
106. If $\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is square root of identity matrix of order 2 then -
(a) $1+\alpha^{2}+\beta \gamma=0$
(b) $1+\alpha^{2}-\beta \gamma=0$
(c) $1-\alpha^{2}+\beta \gamma=0$
(d) $\alpha^{2}+\beta \gamma=1$
107. The value of λ, for which the lines
$3 x-4 y=13,8 x-11 y=33$ and $2 x-3 y+\lambda=0$ are concurrent is
(a) - 1
(b) -7
(c) $\frac{1}{7}$
(d) 9
108. Let $f(x)=\left\{\begin{array}{cl}(x-1) \sin \frac{1}{x-1} & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{array}\right.$

Then which one of the following is true?
(a) f is differentiable at $x=0$ and $x=1$
(b) f is differentiable at $x=0$ but not at $x=1$
(c) f is differentiable at $x=1$ but not at $x=0$
(d) f is neither differentiable at $x=0$ nor at $x=1$
109. The interval in which the function $2 x^{3}+15$ increases less rapidly than the function $9 x^{2}-12 x$, is -
(a) $(-\infty, 1)$
(b) $(1,2)$
(c) $(2, \infty)$
(d) None of these
110. The fuel charges for running a train are proportional to the square of the speed generated in miles per hour and costs `48 per hour at 16 miles per hour. The most economical speed if the fixed charges i.e. salaries etc. amount to` 300 per hour is
(a) 10
(b) 20
(c) 30
(d) 40
111. Evaluate: $\int \frac{1}{1+3 \sin ^{2} x+8 \cos ^{2} x} d x$
(a) $\frac{1}{6} \tan ^{-1}(2 \tan x)+C$
(b) $\tan ^{-1}(2 \tan x)+C$
(c) $\frac{1}{6} \tan ^{-1}\left(\frac{2 \tan x}{3}\right)+C$
(d) None of these
112. $\int_{0}^{10} \frac{x^{10}}{(10-x)^{10}+x^{10}} d x$ is equal to
(a) 10
(b) 5
(c) 2
(d) $\frac{1}{2}$
113. The area bounded by the x-axis, the curve $y=f(x)$ and the lines $x=1, x=b$, is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is
(a) $\sqrt{\mathrm{x}-1}$
(b) $\sqrt{\mathrm{x}+1}$
(c) $\sqrt{\mathrm{x}^{2}+1}$
(d) $\frac{x}{\sqrt{1+x^{2}}}$
114. Solution of differential equation $x^{2}=1+\left(\frac{x}{y}\right)^{-1} \frac{d y}{d x}+\frac{\left(\frac{x}{y}\right)^{-2}\left(\frac{d y}{d x}\right)^{2}}{2!}+\frac{\left(\frac{x}{y}\right)^{-3}\left(\frac{d y}{d x}\right)^{3}}{3!}+\ldots$ is
(a) $y^{2}=x^{2}\left(\ln x^{2}-1\right)+\mathrm{C}$
(b) $y=x^{2}(\ln x-1)+\mathrm{C}$
(c) $y^{2}=x(\ln x-1)+\mathrm{C}$
(d) $y=x^{2} e^{x^{2}}+\mathrm{C}$
115. If the middle points of sides $B C, C A \& A B$ of triangle ABC are respectively $\mathrm{D}, \mathrm{E}, \mathrm{F}$ then position vector of centre of triangle DEF, when position vector of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are respectively $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ is
(a) $\frac{1}{3}(\hat{i}+\hat{j}+\hat{k})$
(b) $(\hat{i}+\hat{j}+\hat{k})$
(c) $2(\hat{i}+\hat{j}+\hat{k})$
(d) $\frac{2}{3}(\hat{i}+\hat{j}+\hat{k})$
116. The angle between any two diagonal of a cube is
(a) 45°
(b) 60°
(c) 30°
(d) $\tan ^{-1}(2 \sqrt{2})$
117. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.
(a) $\sin ^{-1}\left(\frac{8}{21}\right)$
(b) $\sin ^{-1}\left(\frac{5}{21}\right)$
(c) $\sin ^{-1}\left(\frac{7}{21}\right)$
(d) $\sin ^{-1}\left(\frac{1}{21}\right)$
118. The equation of the right bisector plane of the segment joining $(2,3,4)$ and $(6,7,8)$ is
(a) $x+y+z+15=0$
(b) $x+y+z-15=0$
(c) $x-y+z-15=0$
(d) None of these
119. A bag contains $n+1$ coins. It is known that one of these coins shows heads on both sides, whereas the other coins are fair. One coin is selected at random and tossed. If the probability that toss results in heads is $\frac{7}{12}$, then the value of n is.
(a) 3
(b) 4
(c) 5
(d) None of these
120. A coin is tossed 7 times. Each time a man calls head. Find the probability that he wins the toss on more occasions.
(a) $\frac{2}{3}$
(b) $\frac{1}{2}$
(c) $\frac{3}{4}$
(d) $\frac{1}{3}$
121. Consider $\frac{x}{2}+\frac{y}{4} \geq 1$ and $\frac{x}{3}+\frac{y}{2} \leq 1, x, y \geq 0$. Then number of possible solutions are :
(a) Zero
(b) Unique
(c) Infinite
(d) None of these
122. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ then A^{100} :
(a) $2^{100} \mathrm{~A}$
(b) $2^{99} \mathrm{~A}$
(c) $2^{101} \mathrm{~A}$
(d) None of the above
123. If $\left|\begin{array}{ccc}p & q-y & r-z \\ p-x & q & r-z \\ p-x & q-y & r\end{array}\right|=0$, then the value of $\frac{p}{x}+\frac{q}{y}+\frac{r}{z}$ is
(a) 0
(b) 1
(c) 2
(d) 4 pqr
124. Through the vertex O of a parabola $y^{2}=4 x$, chords OP and OQ are drawn at right angles to one another. The locus of the middle point of $P Q$ is
(a) $y^{2}=2 x+8$
(b)
$y^{2}=x+8$
(c) $\mathrm{y}^{2}=2 \mathrm{x}-8$ (d) $\quad \mathrm{y}^{2}=\mathrm{x}-8$
125. Let $f(x)=\left\{\begin{array}{l}\frac{1-\sin ^{3} x}{3 \cos ^{2} x}, x<\frac{\pi}{2} \\ p, \quad x=\frac{\pi}{2} \\ \frac{q(1-\sin x)}{(\pi-2 x)^{2}}, x>\frac{\pi}{2}\end{array}\right.$

If $f(x)$ is continuous at $x=\frac{\pi}{2},(p, q)=$
(a) $(1,4)$
(b) $\left(\frac{1}{2}, 2\right)$
(c) $\left(\frac{1}{2}, 4\right)$
(d) None of these

ENGLISH

DIRECTIONS (Qs. 126-128): Out of the four alternatives, choose the one which express the correct meaning of the word.
126. AUGMENT
(a) Increase
(b) Decrease
(c) Save
(d) Mention
127. CONSOLATION
(a) Comfort
(d) Problem
(c) Sadness
(d) Solution
128. AUXILIARY
(a) Chief
(d) Supplemental
(c) Negligible
(d) Separate

DIRECTIONS (Qs. 129-131): Choose the word opposite is meaning to the given word.
129. AUSPICIOUS
(a) Prosperous
(b) Unfavourable
(c) Improper
(d) New
130. RECOMPENSE
(a) Emolument
(d) Reward
(c) Payment
(d) Penalty
131. IMPEDE
(a) Block
(b) Delay
(c) Push
(d) Freeze

DIRECTIONS (Qs. 132-134): A part of sentence is underlined. Belence are given alternatives to the underlined part a, b, c and d which may improve the sentence. Choose the correct alternative.
132. They requested me to follow them.
(a) ordered
(b) urged
(c) asked
(d) No improvement
133. She did not believed me.
(a) believing
(b) believe to
(c) believe
(d) No improvement
134. I am fine, what about you?
(a) your
(b) your's
(c) yours
(d) No improvement

DIRECTIONS (Qs. 135-137): Fill in the blanks.
135. They were afraid \qquad the lion, so they dropped the idea of hunting in jungle.
(a) in
(b) to
(c) from
(d) of
136. Our company signed a profitable last month.
(a) issue
(d) agenda
(c) deal
(d) paper
137. What is your for tonight?
(a) Principle
(b) Motto
(c) Plan
(d) Objective

DIRECTIONS (Qs. 138-140): Arrange the following sentences in correct pattern and mark at the correct combination.
138. 1. Today we live in modern technology era.
P. We have a log of problems now.
Q. We want to get everything in one day.
R. Ancient time was quite pleasant.
S. We has no problems then.
6. Perhaps greed is the main cause for this.
(a) PQRS
(b) PRSQ
(c) SRQP
(d) RPQS
139. 1. He is a common man.
P. Yesterday our city saw a brutal crime.
Q. Police is trying to arrest innocent persons.
R. The criminals are well known.
S. Police as well as whole system in corrupt.
6. Police will arrest him as he is an easy target because of being a common man.
(a) PRSQ
(b) PQSR
(c) PQRS
(d) PSQR
140. 1. I want to change the room.
P. Last month I got a job.
Q. I had been living there for six months.
R. The office is far from the room.
S. I want to cut expenses of travelling.
6. Hopefully I will do this next week.
(a) PQRS
(b) PRSQ
(c) QPRS
(d) PQSR
141. In a certain code language, 'SAFER' is written as '5@3\#2' and 'RIDE' is written as '2®\%\#', how would 'FEDS' be written in that code?
(a) $3 \#$ O5
(b) $3 @ \% 5$
(c) $3 \# \% 5$
(d) $3 \# \% 2$
142. Find the missing number from the given response.

(a) 72
(b) 720
(c) 7200
(d) 38
143. If the first and second letters in the word DEPRESSION were interchanged, also the third and fourth letters, the fifth and the sixth letters and so on, then which of the following would be seventh letter from the right.
(a) O
(b) P
(c) R
(d) S
144. Today is Thrusday. The day after 59 days will be
(a) Sunday
(b) Monday
(c) Tuesday
(d) Wednesday
145. Which of the following represents coal mines, factories and fields?
(a)

(b)

(c)

(d)

146. Find out the missing term in the series.
$1,8,27, ?$
(a) 52
(b) 58
(c) 64
(d) 65
147. If ' + ' means ' x ', ‘ - ' means ' + ', ‘ x ' means ' \div ' and ' \div ' means ' - ', then $6-9+8 \times 3 \div 20=$?
(a) -2
(b) 6
(c) 10
(d) 12
148. Here are some words translated from an artificial language.
mallon piml means blue light mallon tifl means blue berry arpan tifl means rasp berry
Which word could means 'light house'?
(a) tiflmallon
(b) pimlarpan
(c) mallonarpan
(d) pimldoken
149. What is the water image of below figure?

(a)

(b)

(c)

(d)

150. A piece of paper is folded and penched as shown in the figure below

(a)

(b)

(c)

(d)

How will it appear when unfolded?
(a)

(b)

(c)

(d)

Physics							
Question No	Answer Key						
1	b	11	d	21	a	31	a
2	b	12	d	22	d	32	b
3	c	13	c	23	c	33	d
4	a	14	d	24	c	34	a
5	b	15	b	25	b	35	c
6	c	16	b	26	c	36	d
7	a	17	d	27	b	37	d
8	c	18	d	28	c	38	d
9	b	19	c	29	c	39	a
10	d	20	b	30	a	40	a

Chemistry							
Question No	Answer Key						
41	c	51	d	61	a	71	d
42	b	52	c	62	a	72	Answer Key
43	c	53	b	63	a	73	c
44	b	54	a	64	b	74	b
45	d	55	a	65	c	75	d
46	b	56	a	66	c	76	d
47	a	57	a	67	d	77	b
48	a	58	d	68	d	78	b
49	b	59	d	69	c	79	c
50	b	60	c	70	a	80	a

Mathematics							
Question No	Answer Key						
81	b	93	b	105	b	117	a
82	a	94	d	106	d	118	b
83	a	95	a	107	b	119	c
84	b	96	d	108	b	120	b
85	c	97	a	109	b	121	c
86	c	98	d	110	d	122	b
87	d	99	b	111	c	123	c
88	a	100	c	112	b	124	c
89	a	101	a	113	d	125	c
90	c	102	a	114	a		
91	a	103	c	115	d		
92	c	104	b	116	d		

English							
Question No	Answer Key	Question No	Answer Key				
126	a	141	c				
127	a	142	b				
128	b	143	b				
129	b	144	a				
130	d	145	b				
131	c	146	c				
132	b	147	c				

	133	c	148	d			
134	d	149	b				
135	d	150	b				
136	c						
137	c						
138	b						
139	a						
140	c						

