GPAT QUESTION PAPER 2011 WITH ANSWER KEY

GPAT QUESTIONS

1.	A glycoalkaloid									
	[P] Contains sulphur in addition to nitrogen in its molecule									
	[Q] Is glycosidic in nature.									
	[R] Can be hydrolysed to an alkaloid.									
	[S] Always contains endocyclic nitrogen in its molecule.									
	(a) P&R (b) Q&S (c) Q&R (d) P&Q									
2.	Which of the following statements are true for ginseng root									
	[P] It is among the most traded plant material of Brazil									
	[Q] It is obtained from Panax ginseng and Panax quinquefolium									
	[R] It is obtained from young plants of six months to one year age									
	[S] It contains derivatives of protopanaxadiol.									
	(a) P&Q (b) R&S (c) Q&R (d) Q&S									
3.	Which of the following drugs is a triterpenoid containing root?									
	(a) Valerian (b) Brahmi (c) Satavari (d) Adusa									
4.	Which of the following alkaloids is derived from tyrosine									
	(a) Quinine (b) Morphine (c) Atropine (d) Ephedrine									
5.	The following options carry the name of the plant, part used and its family. Find awrong combination.									
	(a) Aegle marmelos, fruit & Rutaceae									
	(b) Conium maculatum, fruit & Umbelliferae									
	(c) Glycyrrhiza glabra, root and stolon & Leguminosae									
	(d) Strophanthus gratus, seed & Scrophulariaceae									
6.	Anomocytic stomata, trichomes with collapsed cell and absence of calcium oxalate crystals are some of									
	themicroscopic features of which plant									
	(a) Digitalis (b) Hyoscyamus (c) Mentha (d) Senna									
7.	Each of the following options lists the name of the drug, its class, pharmacologicalaction and plan									
	source.Choose an option showing a wrong combination.									
	(a) Asafoetida, oleo-gum-resin, anti-flatulence, Ferula foetida									
	(b) Benzoin, bakam, antiseptic, Styrax benzoin									
	(c) Myrrh, gum-resin, antiseptic, Commiphora wightii									
	(d) Papaine, enzyme, proteolytic, Carica papaya									

8.	Quinoline alkaloids are biosynthesized via which	h one	e of the following pathways
	(a) Shikimic acid -tyrosine	(b)	Shikimic acid -tryptophan
	(c) Shikimic acid -cathinone	(d)	Shikimic acid - phenylalanine
9.	Which of the following ergot alkaloids is water s	solub	le and shows blue fluorescence
	(a) Ergosine	(b)	Ergotamine
	(c) Ergocristme	(d)	Ergometrine
10.	Khellin is an active constituent of which one of t	he fo	ollowing plants
	(a) Prunus serona	(b)	Tribulus terrestis
	(c) Ammi visnaga	(d)	Vanilla plamfolia
11.	Goldbeater's skin test is used to detect the prese	ence	of which one of the following classes of compounds
	(a) Tannins	(b)	Steroids
	(c) Glycerides	(d)	Resins
12.	Which one of the following compounds is usefu	l for	the stimulation of cell division and release of lateral
	bud dormancy?		
	(a) zeatin	(b)	2, 4-Dichlorophenoxyacetic acid
	(c) Indole acetic acid	(d)	Picloram
13.	Phenylethylisoquinoline is the precursor of which	ch of	the following alkaloids
	(a) Colchicine	(b)	Papaverine
	(c) Emetine	(d)	Cephaline
14.			cters: Anther cells, parenchyma,pollen grains,phloem
	fibers, volatile oil cells and stone cells. The powd		A A PASSAGE
	(a) Clove bud powder	, ,	Clove bud powder with stalk
	(c) Mother Cove	7.5	None of the above
15.	Arrange the following fatty acids in decreasing of		
	[P] Stearic [Q] Oleic acid	٠,	Linolenic acid [S] Linoleic acid
	(a) P>Q>R>S	` '	S>R>P>Q
	(c) R>S>Q>P	(d)	Q>P>R>S
16.	Determine the correctness or otherwise of the fo	llow	ing Assertion [a] and the Reason [r]:
	Assertion (a): Tannins are polyphenolic substance	es oc	curring in plant cell sap. Hydrolysable and condensed
	tannins are differentiated by match stick test		
	Reason (r): The condensed tannins are resistan	t to a	acid hydrolysis therefore stain the lignin present in
	matchstick.		
	(a) Both (a) and (r) are true, and (r) is a correct	rea	son for (a)
	(b) Both (a) and (r) are true, but (r) is NOT the	corre	ect reason for (a)
	(c) (a) is true but (r) is NOT the correct reason	for (a	a)
	(d) Both (a) and (r) are false		

17.	Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]: Assertion (a): Castor oil is soluble in alcohol and is used as purgative. Reason (r): The oil contains ricinoleic acid having a hydroxyl group at C-12 position which is responsible for its solubility in alcohol and its purgative action. (a) Both (a) and (r) are true but (r) is NOT the correct reason for (a) (b) (a) is true but (r) is NOT the correct reason for (a) (c) Both (a) and (r) are true and (r) is the correct reason for (a)									
18.	(d) Both (a) and (r) are false In acetate mevalonate pathway geranyl pyrophos constituents of volatile oils.	spha	ate leads to forma	ation of monoterpenes, the major						
[P] Geranyl pyrophosphate contains two isoprene units										
	[Q] Monoterpenes have 15 carbon atoms									
	[R] The two isoprene units condense in head to ta	ail fa	ashion to give Moi	noterpenes						
	[S] Isoprene unit has molecular formula of C ₅ H ₈ .									
	which one of the given statements is correct?		(h) Diefele Oie	Anna Diahun Ciafala						
	(a) P is true. Q is false, R is true, S is false			true, R is true, S is false						
19.	(c) P is true. Q is true, R is fa1se, S is true Two genetic types of Cannabis i.e. drug type and H			false, R is true, S is true						
1).	[P] Drug type cannabis is rich in (-) 9-trans-tetrah			ateu.						
	[Q] Hemp type cannabis is rich in cannabidiol	ilyui	ocamiaomor							
	[R] Drug type cannabis is rich in cannabidiol									
	[S] Hemp type cannabis contains elongated bast fi	ibre	s o remi							
	which one of the given statements is correct?									
	(a) P is true, Q is true, R is true, S is true		(b) P is true, Q is f	false, R is false, S is true						
	(c) P is true, Q is true, R is false. S is true		(d) P is false, Q is	fake, R is true, S is fake						
20.	Each of the following options lists a phytoconstitue and corresponding semisynthetic analogue. Find a (a) Podophyllotoxin, lignan, anticancer, etoposide (b) Sennoside, anthraquinone, laxative, sinigrin (c) Atropine, alkaloid, anticholinergic, homatropin (d) THC, terpenophenolic, psychoactive, nabilone	a M e ine								
21.	Inhibition/induction of which of the following Cytod	chr	ome P450 enzyme	system ismost likely to be involved						
	in important drug-drug interactions									
	(a) CYP3A4 (b) CYP2D6 (c)	(c)	CYP2C9	(d) CYP1A2						
22.	Which of the following mechanisms is NOT related	d to	platelet aggregatio	on inhibitory action						
	(a) ADP receptor antagonism (I	(b)	Glycoprotein IIb/	Illa receptor antagonism						
	(c) Phosphodiesterase inhibition (d	(d)	Prostacyclin inhib	ition						

23.	Choose the correct statement about the given is	our diseases?						
	[P] Cardiomyopathy	[Q] Rheumatoid arthritis						
	[R] Myasthenia gravis	[S] Ukerative colitis						
	(a) Q & S are autoimmune disorders	(b) P & Q are autoimmune disorders						
	(c) P & R are not autoimmune disorders	(d) R & S are not autoimmune disorders						
24.	Which of the following species is being inactivate	ed by the enzyme Dipeptidyl Peptidase-4						
	(a) Oxytocin (b) vasopressin	(c) Incretins (d) Glucagon						
25.	Patients taking isosorbide mononitrate or nitr	oglycerine should be advised not to take Sildenafil Thi						
	drug- drug interaction causes which of the follo	ving actions						
	(a) Respiratory failure	(b) Severe hypotension						
	(c) Prolongation of QT interval	(d) Myocardial ischemia						
26.	Which of the following drugs does NOT induce in	nydriasis?						
	(a) Atropine (b) Ephedrine	(c) Phentolamine (d) Cocaine						
27.	Which of the following statements is TRUE for a	ngiotensin-II						
	(a) Causes myocyte hypertrophy							
	(b) Decreases the action of sympathetic nervous system							
	(c) Increases force of myocardial contraction							
	(d) Decreases the synthesis and release of aldo	sterone						
28.	Which of the following beta blockers has been sho	wn clinically to reduce mortality inpatients of symptomatic						
	heart failure http://www.xamstudy.com							
	(a) Atenolol (b) Carvedilol (c)	Propranolol (d) Esmolol						
29.	All of the given four drugs cause vasodilatation.	Choose the correct statement about them.						
	[P] Bradykinin [Q] Minoxidil [R]	Acetylcholine [S] Hydralazine						
	(a) P & Q cause release of nitric oxide	(b) Q & R do not cause release of nitric oxide						
	(c) R & S cause release of nitric oxide	(d) P & S do not cause release of nitric oxide						
30.	Rhabdomyolysis is the side effect associated wit	h which of the following classes of drugs						
	(a) ACE inhibitors	(b) Statins						
	(c) Calcium channel blockers	(d) Sodium channel blockers						
31.	Blood level monitoring of HbA1c is important in	which of the given diseased states						
	(a) Hypercholesterolemia	(b) Diabetes mellitus						
	(c) Myocardial infarction	(d) Congestive heart failure						
32.	Most of the emergency contraceptives have whi	ch one of the following active ingredients						
	(a) Estradiol (b) Norethindron	(c) Misoprostol (d) Levonorgesterol						
33.	Which of the following antibiotics produces conc	entration dependent bactericidal action and also possesses						
	post-antibiotic effect							
	(a) Ceftazidime (b) Azithromycin	(c) Amikacin (d) Piperacillin						
34.		which of its following actions						
	(a) Integrase inhibition	(b) CCR5 Co-receptor antagonism						
	(c) Fusion inhibition	.(d). Reverse transcriptase inhibition						

35.	What is chemotaxis								
	(a) Toxicity of chemicals	(b)	Taxo	onomy of chemica	als				
	(c) Inhibition of Inflammation	(d)	Mov	Movement of leucocytes in inflammation					
36.	Which one of the followings is NO?	an example of G	-prot	ein coupled recep	tor?				
	(a) Muscarinic cholinergic receptor	or (b)	Alph	a adrenoceptor					
	(c) Nicotinic cholinergic receptor	(d)	Beta	adrenoceptor					
37.	Which of the followings used in the	treatment of rheu	ımato	oid arthritis is NO	T a b	iologic response modifier			
	(a) Anakimra (b) Leflunor	nide (c)	Etan	ercept	(d)	Infliximab			
38.	Which of the following statements is FALSE for artemisinin?								
	(a) It is a sesquiterpene lactone e	ndoperoxide							
	(b) It is a drug of choice in prophy	axis of malaria							
	(c) It does not cure relapsing mala	ria							
	(d) It is useful in treatment of cere	bral fakiparum m	nalari	a					
39.	Which of the followings is a nonco	mpetitive inhibito	r of t	the enzyme rever	se tra	inscriptase in HIV			
	(a) Lamivudine (b) Nevirap	ine (c)	Aba	cavir	(d)	Tenofovir			
40.	Which of the followings is the mos	t effective monot	heraj	y for raising HD	L cho	lesterol			
	(a) Statins (b) Niacin	(c)	Eze	timibe	(d)	ω-3-Fatty acids			
41.	Which of the following parameters from plasma concentration time profile study gives indication of the								
	rate of drug absorption?								
	(a) C_{max} (b) T_{max}	(c)	AUC	remix	(d)	t _{1/2}			
42.	Which of the following pairs has high binding affinity for 5α -reductase								
	(a) Letrozole and androstenedion	e	(b)	Finasteride and	estol	actone			
	(c) Finasteride and 5-DHT		(d) Finasteride and testosterone						
43.	Which of the following skeletal mu	scle relaxants acts	dire	ectly on the contra	actile	mechanism of the muscle			
	fibers								
	(a) Pancuronium (b) Bac	lofen	(c)	Dantrolene	(d)	Chorzoxazone			
44.	Which is the molecular target for the	ne vinca alkaloids	as an	ticancer agents					
	(a) Tyrosine kinase (b) DN	A	(c)	Ribosomes	(d)	Tubulin			
45.	Choose the correct pair of the new	rodegenerative di	isord	ers from those gi	ven b	pelow.			
	(a) Parkinson's disease and Alzhe	imer's disease	(b)	b) Schizophrenia and Mania					
	(c) Alzheimer's disease and Schiz	ophrenia	(d)	Parkinson's dise	ase a	nd Autism			
46.	A 64 year old woman with a histo	ory of Type II dia	bete	s is diagno sed w	ith h	eart failure. which of the			
	followings would be a Poor choice	in controlling her	diab	etes					
	(a) Metformin (b) Pio	glitazone	(c)	Glipizide	(d)	Exenatide			

47.	7. Mifepristone and gemeprost combination is used for medical termination of pregnancy. The action is								
	causeddue to which of the following mechanisms								
	(a) Mifepristone is an antiestrogen while gemeprost is a prostaglandin E receptor agonist								
	(b) Mifepristone is an antiprogestin while gemeprost is a prostaglandin E receptor agonist								
	(c) Mifepristone is an antiandrogen while gemeprost is a prostaglandin E receptor agonist								
	(d) Mifepristone is an antiprogestin while gemeprost is a prostaglandin E receptor antagonist								
48.	Which one of the followings is a β lactamase inhibitor								
	(a) Penicillanic acid (b) Embonic acid								
	(c) Cephalosporanic acid (d) Clavulanic acid								
49.	All of the followings are indications for use of ACE inhibitors Except for one. Identify that								
	(a) Hypertension (b) Myocardial infarction								
	(c) Left ventricular dysfunction (d) Pheochromocytoma								
50.	Neural tube defects may occur by which one of the following anti-seizure drugs								
	(a) Ethosuximide (b) Vigabatrin (c) Valproic acid (d) Primidone								
51.	Which water is used for hand washing in a change room of pharmaceutical manufacturing plant?								
	(a) Potable water (b) Purified water (c) Disinfectant water (d) Soap water								
52.									
	capsules?								
	(a) Truck drying. (b) Fluid bed drying (c) Vacuum drying (d) Microwave drying								
53.	Which one of the followings does NOT afford a macromolecular inclusion compound								
	(a) Zeolites (b) Dextrins (c) Silica gets (d) Cyclodextrins								
54.	If C is the concentration of dissolved drug and Cs is the saturation concentration. In which case the								
	sink conditions are said to be maintained?								
	(a) C < 20% of Cs (b) C > 20% of Cs (c) C < 10% of Cs (d) C > 10% of Cs								
55.	Which condition does not apply as per Indian law while conducting single dose bioavailability study of an								
	immediate release product								
	(a) Sampling period should be at least three t1/2 el								
	(b) Sampling should represent pre-exposure, peak exposure and post-exposure phases								
	(c) There should be at least four sampling points during elimination phase								
	(d) Sampling should be continued till measured AUC is at least equal to 80% of AUC								
56.	Upon standing sometimes gel system shrinks a bit and little liquid is pressed out. What is this phenomenon								
	known as								
	(a) Oozing (b) Syneresis (c) Shrinking (d) Desolvation								
57.	Which of the following routes of administration of drugs is associated with Phlebitis								
	(a) Subcutaneous (b) Intravenous (c) Intraspinal (d) Intradural								

58.	Study the following two state	ements and choose th	e co	orrect answer					
	[P] Antibodies are serum p	roteins providing imr	nun	nity.					
	[Q] IgG provides immunity t	to new born babies w	hile	IgM is the first generate	ed antibody.				
	(a) P is correct and Q is inc	orrect ((b)	P is incorrect and Q is c	orrect				
	(c) Both P and Q are correct (d) Both P and Q are incorrect								
59.	Which microbe is used for v	alidation of sterilizati	ion	by filtration process					
	(a) Bacillus stearothermophi	ilus ((b)	Pseudomonas diminuta					
	(c) Bacillus subtilis	((d)	Pseudomonas aeruginos	2				
60.	Non-linear pharmacokinetics can be expected due to								
	[P] Enzyme induction								
	[Q] Active secretion Choose	the correct answer							
	(a) Both P and Q are true	((b)	P is true, Q is false					
	(c) Q is true. P is false	((d)	Both P and Q are false					
61.	Which wavelength of the UV	light provides maxim	um	germicidal action					
	· ·				i) 240.0 nm				
62.	Which of the following states	,	. ,	(
	(a) Chick Martin test uses organic matter in media								
	(b) The organism in Rideal-walker test is S. typhi								
	(c) Rideal-walker test uses organic matter in media								
	(d) The organism in Chick Martin test is S. typhi								
63.	Which of the following force	es contribute to stabil	ity (of charge-transfer compl	exes				
	(a) Resonance forces								
	(b) Resonance and London dispersion forces								
	(c) Dipole-dipole interactions and London dispersion forces								
	(d) Resonance forces and dipole-dipole interactions								
64.	Which of the following isot	herms are produced	wh	en the heat of condensa	ition of successive layers is				
	more than the heat of adsor	ption of first layer							
	(a) Type III and IV			(b) Type II and V					
	(c) Type I and III			(d) Type III and V					
65.	Which of the followings act a	as a non-ionic emulsif	yin	g agent					
	(a) Triethanolamineoleate			(b) Polyoxyethylene sorbitan monooleate					
	(c) N-Cetyl-N-ethylmorphol	inium ethosulfate		(d) Dioctylsulphosuccin	ate				
66.	The minimal effective flow ra	ate of air in laminar flo	w h	nood should be not less th	an how many cubic feet per				
	minute								
	(a) 10 (b	o) 50		(c) 100	(d) 1000				
67.	Which of the following Scheo	dules include shelf life	of o	drugs					
) Schedule M		(c) Schedule G	(d) Schedule P				
				· Jan and Symmetric St.	• • • • • • • • • • • • • • • • • • • •				

68.	Which of the following pumps is used in handl	ing of	corrosive liquids							
	(a) Turbine pump (b) volute pump		(c) Air binding pump	(d) Peristaltic pump						
69.	By addition of which of the followings the shell	s of so	ft gelatin capsules may be	madeelastic						
	(a) Polyethylene glycol (b) Sorbitol		(c) Propylene glycol	(d) Dibutyl phthalate						
70.	Convert 90% v/v alcohol to Proof strength. Ch	oose t	he correct answer.							
	(a) 57.77° under proof		(b) 57.77° over proof							
	(c) 47.41° over proof		(d) 47.41° under proof							
71.	Department of Transport Test (DOT) is perform	med fo	r which of the followings							
	(a) Strip packing (b) Aerosols		(c) Injection packing	(d) Glass containers						
72.	What is the Heat of vaporization of water at 10	00°C?								
	(a) 2790 cal/mole (b) 7290 cal / mole		(c) 7920 cal/mole	(d) 9720 cal/mole						
73.	Determine the correctness or otherwise of the	follov	ving Assertion [a] and the	e Reason [r]:						
	Assertion[a]:For a pharmaceutical powder tru	ie dens	sity is greater than the gra	nule density.						
	Reason[r]: Mercury displacement used for det	termin	ing granule density, allows	s penetration of liquid into						
	internal pores of the particles.									
	(a) [a] is true but [r] is false									
	(b) Both [a] and [r] are false									
	(c) Both [a] and [r] are true and [r] is the co	rrect r	eason for [a]							
	(d) Both [a] and [r] are true but [r] is NOT th	e corr	ect reason for [a]							
74.	Determine the correctness or otherwise of the	follov	ving statements:							
	[P] Rheopexy is the phenomenon when a sol f	forms	gel more readily when sh	eared gently.						
	[Q] In a rheopectic system, sol is the equilibrium	ım for	m.							
	[R] Rheopexy is a phenomenon when a sol for	ms ge	when the material is kep	ot at rest						
	(a) [R] is true but [P] and [Q] are false	(b)	[P] is true but [Q] and [R] are false						
	(c) [P], [Q] and [R], all are false	(d)	[P], [Q] and [R], all are tr	rue						
75.	Define PlasmapheresisChoose the correct answ	wer								
	(a) The process of collecting plasma and return	rning t	he red blood cells concen	trate to thedonor						
	(b) The process of collecting red blood cells co			sma to thedonor						
	(c) The process of separating whiteblood cells from blood									
	(d) The process of generating artificial blood	plasma	a expanders							
76.	Moleculesin the smectic liquid crystals are char	racteri	zed by which one of thefo	llowings						
	(a) Mobility in three directions and rotation in one axis									
	(b) Mobility in two directions and rotation in one axis									
	(c) Mobility in two directions and no rotation									
	(d) Mobility in three directions and no rotation	n								
77.	Choose the correct sequence of Moisture vapo	r Tran	smission Rate in packagi	ng materials?						
	(a) Paper >Aluminium foil >PVC>PVdC	(b)	Aluminium foil >PVC>PV	dC> Paper						
	(c) Aluminium foil>PVdC>PVC> Paper	(d)	Paper >PVC>PVdC>Alum	inium foil						

78.	. How many mL of 50% (w/v) dextrose solution and how many mL of 5% (w/v) dextrose solution are required to prepare 4500 mL of a 10 (w/v) solution?						
	(a) 500 mL of 50% and	4000 mL of 5%	(b)	1000 mL of 50% an	d 3500 mL of 5%		
	(c) 4000 mL of 50% an	d 500 mL of 5%	(d)	1500 mL of 50% an	d 3000 mL of 5%		
7 9.			_	-	alf-1ife ofthe drug is 3 h,volume te the steady state concentration		
	(a) 5.05mcg/ml	(b) 4.50 mcg/ml	(c)	3.53 mcg/ml	(d) 3.00 mcg/ml		
80.	P-Glycoprotein pump is r	esponsible for which or	ne of	the followings			
	(a) Transporting the dru	gs from the enterocyte	s into	the gutlumen			
	(b) Transporting the dru	gs from gut lumen into	ente	erocytes			
	(c) Transporting the dru			• 2			
	(d) Transporting the dru			-			
81.	Statement [x]:Hofmeister			J	s per their ionic size.		
01.	Statement[Y]:Therelative	0	٠.		o per alen leme side.		
	[P] Al***> Ba **	[Q] Li > F - [R] NH		0			
	Choose the correct staten	nent					
	(a) Statement x is true bu	it P, Q and R are false in	State	ement Y			
	(b) Statement x is false as	nd P, Q and R arefalsein	State	ement Y			
	(c) Statement x is true ar	nd Q and R are fake in S	Stater	nent Y			
	(d) Statement x is false an	nd P is false in Statemer	nt				
82.	The first stage of wetting	on addition of a granul	ating	agent to the powders	s is characterized by which one		
	of the followings?	J			and the second of the second o		
	(a) Capillary state	(b) Pendular state		(c) Funicular state	(d) Droplet state		
83.	Larger values of Ky in the			. ,			
	(a) Harder tablets	(b) Softer tablets		(c) Fluffy tablets	(d) Brittle tablets		
84.	The degree of flocculation	of a suspension is 1.5	and	the sedimentation vo	olume is 0.75. what will be the		
	ultimate volume of defloc	culated suspension					
	(a) 2.0	(b) 1.5		(c) 0.75	(d)0.5		
85.	What will be the time re	quired for a drug exhi	biting	g first order rate con	stant of 4.6/hr to be degraded		
	from initial concentration				,		
	(a) 2 hr	(b) 4hr		(c) 9 hr	(d) 0.5 hr		
86.		quired maintaining the			20 μgm/ml for 24 hr of a drug		
	exhibiting total clearance		•				
	(a) 96 mg	(b) 480 mg		(c) 960 mg	(d) 48 mg		
87.	What will be the urine to	. ,					
	[urine (pH : 5) plasma (pl	•		3			
	(a) 1:101	(b) 1:201		(c) 2:101	(d) 1:202		
	₹1.5.	<i></i>			3.3		

88.	The Reynolds number widely used to classify flow bel	havior	r of fluids is the ratio of which one of the following	gs:					
	(a) Inertial forces to gravitational forces	(b)) Inertial forces to viscous forces						
	(c) Viscous forces to inertial forces	(d)) viscous forces to gravitational forces						
89.	If the distillation graph using McCabe Thiele metho	od is pa	parallel to x-axis, then the feed is which one of the	he					
	followings?								
	(a) Saturated liquid	(b)) Saturated vapor						
	(c) Superheated liquid	(d)) Superheated vapor						
90.	What for the baffles are provided in a shell and tul	be hea	at exchanger?						
	(a) To increase turbulence	(b)) To decrease turbulence						
	(c) To prevent corrosion	(d)) To increase shell side passes						
91.	SOS means which one of the followings								
	(a) Take occasionally	(b)) Take immediately						
	(c) Take when necessary	(d)) Take as directed						
92.	Which statement is FALSE for Association Colloids								
	(a) They are also called amphiphiles	(b)) They contain aggregated molecules						
	(c) They show partial solvation	(d)) They are also called micelles						
93.	Which of the followings is NOT a reciprocating pur	mp							
	(a) Plunger pump	(b)) Diaphragm pump						
	(c) Gear pump	(d)) Piston pump						
94.	Which is NOT applicable to protein binding								
	(a) Klotz reciprocal plot	(b)) Sandberg modified equation						
	(c) Blanchard equation	(d)) Detli plot						
95.	Statement [P]: Soft gelatin capsules contain 12-15	% moi	pisture.						
	Statement [Q] : Hard gelatin capsule shells contain 6	6-10 %	% moisture.						
	Choose the correct statement? http://www.xamstudy.com								
	(a) Both of the above statements P&Q are true	(b)	Both of the above statements P&Q are false						
	(c) Statement P is true and Q is false	(d)) Statement P is false and Q is true						
96.	According to USP, the speed regulating device	of the	e dissolution apparatus should be capable	of					
	maintainingthe speed within limits of what % of the selected speed?								
	(a) 1% (b) 2%	(c)) 4% (d) 5%						
97.	A drug whose solubility is 1 g/L in water, when giv	en ora	ally at a dose of 500 mg is absorbed up to 95%	of					
	the administered dose. The drug belongs to which class according to the BCS classification?								
	(a) Class I (b) Class II	(c)	Class III (d) Class IV						
98.	Which statement is NOT true for steam distillation								
	(a) It is also called differential distillation								
	(b) It can be used for separation of immiscible liq	uids							
	(c) It can be applied for volatile substances								
	(d) It can be used for separation of miscible liquid	ds							
	(a) it can be abea for separation of inisciple figure								

	(a)	1:4	(b)	1:6	(c)	1 : √2	(d) 1 : √3				
100.	Wh	at is Primogel									
	(a)	Substituted HPM	C for	direct compressi	on						
	(b)	Modified microc	rysta	lline cellulose for	dire	ct compression					
	(c)	Hydro gellingpol	ymer	rfor gel formation							
	(d)	Modified starch	or d	isintegration							
101.	A to	ooth paste conta	ins s	tannous fluoride	and	calcium pyroph	osphate along with other formulation				
	con	stituents. Choose	the c	correct statement	out o	of the followings?					
	(a)	Stannous fluoride	is a	n anticaries agent	whi	le calcium pyroph	osphate is a dentifrice				
	(b)	Stannous fluoride	is a	dentifrice while ca	akiu	m pyrophosphate	is a desensitizing agent				
	(c) Stannous fluoride is a desensitizing agent while calcium pyrophosphate is an anticaries agent										
	(d)	Both are dentifri	ces w	vhile calcium pyroj	phos	phate is addition	ally a desensitizing agent				
102.	Нус	lrogen peroxide s	oluti	on (20 volumes)	is u	sed topically as	a mild antiseptic. It is mainly used for				
	clea	ning of wounds w	hich	could be due to s	ome	of the following	actions of hydrogen peroxide.				
	[P] Astringent action										
	[Q]	Nascent hydroge	n rel	easing action							
	[R]	$Oxidizing \ action \\$									
	[S]	Mechanical clean	sing	action Choose the	corr	ect statements for	the use of hydrogen peroxide as cleaning				
		agent for wound	S								
	(a)	P&R	(b)	P&Q	(c)	R&Q	(d) R&S				
103.	Mag	gnesium trisilicate	is c	onsidered to be a	bett	er antacid than a	luminium hydroxide due to its following				
	add	itional properties	:								
	[P]	It has a fixed che	mica	l composition							
	[Q]	It forms colloidal	silic	one dioxide							
	[R]	Magnesium ions	over	come constipatio	n						
	[S]	Magnesium ions	cause	e higher inhibition	of pe	epsin than alumin	ium ions Choose the correct combination				
		of statements									
	(a)	Q&S	(b)	R&S	(c)	P&Q	(d) Q&R				
104.	Bor	ic acid is a weak a	cid (pKa 9.19) which ca	anno	t be titrated with	a standard solution of sodium hydroxide				
			-				ble on addition of glycerol due to one of				
		• •		hoose the correct		•	0,				
		0		oronic acid on re							
	(b)			onoprotic tetravale		0,	lycerol				
	(c)			pasic acid on react							
	1	•					resence of glycerol				
	. ,					. •					

99. The area of clear opening of any two successive sieves according to Tyler standard is in the ratio of-----.

105.	An iron con	npound used	as heamatinic ag	ent must	meet two re	equirements i	.e. it should be b	iologically
	available and	d be non-irrit	ating. Which one	of the folk	owing comp	ounds meet tl	ne above two requ	uirement
	most closely	r						
	(a) Ferric c	hloride		(b)	Ferric amm	onium sulpha	ate	
	(c) Ferric a	mmonium cit	rate	(d)	Ferrous thi	oglycollate		
106.	Iodine-131	as sodium iod	dide solution is u	sed as a	radiopharma	aceutical for o	diagnostic and th	erapeutio
	purposes. It	s usage is dep	endent on the rel	ease of th	e following e	missions:		
	[P] Alpha pa	rticles	[Q] Pos	itrons				
	[R] Beta em	ission	[S] Gam	ıma radia	tion Choose	the correct c	ombination of sta	tements
	(a) R&S		(b) Q&S	(c)	P&R	(d) P&	S	
107	Arrange the	following Lov	wry-Bronsted acid	ds into the	eir decreasin	g order of aci	dity (highest to k	owest)
	[P] C ₂ H ₅ OH	[Q]	$H_3C - C \equiv CH$	[R]	H,0	[S] CH ₃ NH	1,	
	(a) R>P>Q>			(b)	P>R>Q>S		•	
	(c) P > Q > F	₹> \$		(d)	R > Q > P > 5	S		
108	Alkenes sho	w typical elec	trophilic addition	reactions	s. If an electro	on withdrawi	ng group is attach	ed to one
			e double bond, wh					
		ins electrophil						
	` '	nes free radio						
	` '	nes pericyclic						
		nes nucleophi						
109.	` '	-	ease the rate of SN	2 reaction	ns manifo k l. I	Enhancement	in the rate of such	reactions
			e following effects					
			n by the solvent k		cation unaf	fected		
			the ionic species	0				
			tion and solvation	n of the a	nion			
	- ,,-		on by the solvent l			fected		
110.	` '		aromatic compo				of electrophilic	aromatio
			n the six-member				- 10.1-5	
			roaromatic comp					
		membered on	-		.		,	g
			roaromatic comp	ounds hav	ve lower circ	ulating electr	on density in the	ring than
	. ,	membered on	•					
			igs are smaller i	n size tl	han the six	membered	ones which affe	ects their
	reaction							
			paromatic rings a	re flat wh	ile the five-n	nembered one	es are nuckered	
111			an pyrrole. This is				•	
			on N in pyrrole is			onowing race		
			on N in pyriole is					
						ile nyridina d	nes not haveany	
	(d) Pyridine	has three do	s one hydrogen a www. uble bonds while i	remixed	ucation.in	ı⊷ pyriume u	Jes not naveany	

	(a) Pyrrole	(b) Thiophene		c) Furan	(d) Pyridine		
113	. In nucleophilic al	i <mark>phatic su</mark> bstitution rea	ctions ar	ange the follo	wing leaving gr	oups in decreasing order of		
their leaving capacity?								
	[P] Brosyl	[Q] Hydroxyl	1	[R] Chloro	[S]	Mesyl		
	(a) S > R > P > Q	(b) $P > S > R > Q$	(c) R>Q>S>P	(d) R>S>Q>P		
114	. Determine the c	orrectness or otherwise	of the fo	llowing Asser	ti0n [a] and th	e Reason [r]:		
	Assertion (a): Quaternary ammonium phase transfer catalysts can enhance the rate of nucleophil							
	aliphatic substitution reactions in biphasic systems with water soluble nucleophiles.							
	Reason (r): Qu	aternary ammonium	compoun	ds are highly	polar, positiv	ely charged water solubk		
	compounds.							
	(a) Both (a) and	(r) are true but (r) is	not the co	rrect reason	for (a)			
	(b) Both (a) and	l (r) are true and (r) is	the corre	ct reason for ((a)			
	(c) (a) is true (r) is false						
	(d) Both (a) and							
115				as primary s	tandard for sta	indardization of perchloric		
		non-aqueous titrations?						
		ydrogen phthalate	77.	b) Sodium b				
	(c) Potassium d	ihydrogen phosphate	. (1	d) Sodium m	ethoxide			
116.					wo terms labil	e and inert complexes, are		
		Choose the correct state						
	(a) Labile complexes are formed instantly while inert complexes take hours or days in their formation							
	(b) Labile complexes take much longer time in formation than inert complexes							
	-	exes get hydrolyzed in v		-				
		exes get decomposed of	n mild hea	iting in aqueo	us solutions w	hile inert complexes do not		
	decompose							
117.		n complexometric titra	tions are	chelating age	ents. Choose th	e correct statement about		
	them							
		etal ion complex should	_	- 1		· · · · ·		
		etal ion complex should				•		
		etal ion complex should		_		· · · · · · · · · · · · · · · · · · ·		
			•	•		complexometric titrations		
118.			`	•		rried out: treatment of the		
	•					ed by addition of sulphamic		
	acid and then treatment with N-(I-naphthyl) ethylene- diamine in slightly basic medium to obtain a pink							
	colour; which is measured at a fixed wavelength tocorrelate the quantity of the drug with the optical							
		h e drug u nder estimatio		Mataurinia Inc. I	ما المامات			
	(a) Streptomycir	· •0.	` '	hiamine hydr				
	(c) Dexamethas	one	(a). S	ulphamethox	azole			

112. Diels-Alder reaction can be carried out in which of the following heterocyclic compounds most readily

- 119. Name the compound used for standardization of Karl-Fisher reagent in aquametry?
 - (a) Sodium tartrate dihydrate
- (b) Copper sulphate pentahydrate

(c) Sodium iodide

- (d) Sodium thiosulphate
- 120. In the electrochemical series, the standard reduction potentials of copper and zinc are +0.337 v and -0.763 v, respectively. If the half cells of both of these metals are connected externally to each other through an external circuit and a salt bridge, which one of the following processes will take place?
 - (a) Zinc metal electrode will start dissolving in solution while copper ions will start depositing on the copper electrode.
 - (b) Copper metal electrode will start dissolving in solution while zinc ions will start depositing on the zinc electrode
 - (c) Both of the metal electrodes will start dissolving in the solution
 - (d) Both types of ions will start depositing on their respective electrodes
- 121. In polarography. DME has a number of advantages. One of the advantages is that mercury has large hydrogen over potential. It means which one of the followings?
 - (a) Hydrogen ions get easily reduced on the DME
 - (b) Hydrogen gas gets easily reduced on the DME
 - (c) Hydrogen ions require high potential to be reduced at DME
 - (d) Water is difficult to get oxidized at DME
- 122. Following are the desirable properties of the liquid phase used in GLC EXCEPT for one of the followings.

 Identify that.
 - (a) It should be inert to the analytes
 - (b) It should have high viscosity at operating temperature
 - (c) It should have low vapour pressure at the operating temperature
 - (d) It should have a high resolving power
- 123. In HPLC analysis what type of column would you prefer
 - (a) A column with high HETP and high number of plates
 - (b) A column with low HETP and low number of plates
 - (c) A column with high HETP and low number of plates
 - (d) A column with low HETP and high number of plates
- 124. To synthesize sulphonyl urea antidiabetic, which of the following reactions can be used
 - (a) Reacting a suitably substituted sulphonyl chloride with a desired urea derivative under basic conditions
 - (b) Reacting a suitably substituted sulphonamide with a desired isocyanate derivative
 - (c) Reacting a suitably substituted sulphonic acid with adesired isocyanate derivative
 - (d) Reacting a suitably substituted sulphoxide with a desired urea derivative

125. In an optically active organic compound a chiral carbon has the following attached groups: using Sequence Rules choose the correct order of priority of the groups.

Using 'Sequence Rules' choose the correct order of priority of the groups

(a) Q>P>S>R

(b) P>Q>R>S

(c) Q>P>R>S

- (d) P>Q>S>R
- 126. The following statements are given:
 - [P] Conformational isomers are interconvertible by rotation around a single bond while configurational isomers cannot be interconverted without breaking a bond.
 - [Q] Configurational isomers could be optically active or optically inactive while conformational isomers are optically inactive
 - [R] Geometric isomers must have a double bond in their structures
 - [S] Geometric and optical isomers are the two distinct categories of configurational isomers.

Choose the correct combination of statements.

- (a) P, Q & S are true while R is false
- (b) P, R & S are true while Q is false
- (c) Q, R & S are true while P is false
- (d) P, Q & R are true while S is false
- 127. A carbocation will NOT show one of the following properties. Choose that
 - (a) Accept an electron to give a carbene
 - (b) Eliminatea proton to afford an alkene
 - (c) Combine with a negative ion
 - (d) Abstract a hydride ion to form an alkane
- 128. Determine the correctness or otherwise of the following Assertion (a) And the Reason (r):

Assertion (a): Formaldehyde and benzaldehyde both undergo Cannizaro reaction while acetaldehyde and Phenyacetaldehyde undergo Aldol condensation.

Reason(r): Aldehydes can undergo both Cannizaro as well as Aldol condensation while ketones undergo only Cannizaro reaction.

- (a) Both (a) and (r) are false
- (b) (a) is true but (r) is fake
- (c) (a) is fa1se but (r) is true
- (d) Both (a) and (r) are true

129	. Cho	oose the FALSE statement for E 2 mechanism	in e	limination reactions?			
	(a) These reactions are accompanied by rearrangements						
	(b) These reactions show a large hydrogen isotope effect						
	(c)	These reactions show a large element effect	t				
	(d)	These reactions are not accompanied by h	ydro	gen exchange			
130.					nolvi	nentide?	
100.	. Choose the correct statement for writing the sequence of amino acids in a polypeptide? (a) Amino terminal is to be written on the left hand side while the carboxyl terminal is to be written on the						
	right hand side						
	(b)	Carboxyl terminal is to be written on the left	hand	d side while the amino to	ermi	inal is to be written on the	
		right hand side					
	(c)	Any of the amino acid terminals can be writt	en o	n any sides but it is to b	e me	entioned by specifying the	
		amino terminal and the carboxyl terminal is	n abl	breviations http://www	w.xai	mstudy.com	
	(d)	It varies from author to author how the seq	uen	ce of amino acids in a p	olyp	eptide is to be written	
131.	BET	TA-Carboline ring system is present in					
	(a)	Emetine (b) Riboflavine	(c)	Deserpidine	(d)	d-Tubocurarine	
132.	Wh	ich one of the followings is NOT a bioisoste	ric p	oair?			
	(a)	Divalent ether (-0-) and amine (-NH)	(b)	Hydroxyl (-OH) and th	iol (-ОН)	
	(c)	Carboxylate (CO_2^-) and sulfone (SO_2)	(d)	Hydrogen(-H) and fluo	orin	e (-F)	
133.	Of t	the four stereoisomers of chloramphenicol w	hich	one is the biologically	acti	ve isomer	
	(a)	L-Erythro (b) L-Threo	(c)	D-Erythro	(d)	D-Threo	
134.		ecatalytic triad in acetyl cholinesteraseis com	pose	d of which of the follow	ving	amino acid residues?	
		Serine, Histidine and Glutamate	(b)	Serine, Arginine and (Gluta	mate	
	` '	Threonine, Histidine and Aspartate		Threonine, Arginine a			
135.	. Fajan's method of titrimetric analysis involves detection of the end point on the basis of which one of the						
		owings					
	` .	Colour change		Appearance of a preci	-	te	
		Neutralization reaction	(d)	Adsorption phenome	non		
136.		ich of the following statements is true?					
		Aliphatic protons have chemical shifts > 7 p	pm				
	-	Spin quantum number of proton is 1	.	-6			
(c) Chemical shift describes electronic environment of a proton(d) Vicinal coupling constant is always higher than geminal coupling constant							
127	` '	FT-IR instruments Michaelson interferom				ng. The function of the	
137.		erferometer is to act as a modulator'. What do					
	(a)			•	itein	ent:	
	 (a) The function of the interferometer is to act as a monochromator (b) The function of the interferometer is to convert high frequency radiations into low ones (c) The function of the interferometer is to convert low frequency radiations into high ones (d) The function of the interferometer is to convert frequency domain spectra into time domain spectra 						

1.	38. Polyamine polystyrene resins belong to which	gory of ion-exchange resins?					
	(a) Strongly Acidic Cation Exchange Resins	Strongly Basic Anion Excha	nge Resins				
	(c) Weakly Acidic Cation Exchange Resins) Weakly Basic Anion Exchan	ge Resins				
1	39. Discrepancies in potential measurements invo	g factors like alkaline error a	nd asymmetry potentia				
	are associated with which of the following elec-	es?					
	(a) Hydrogen electrode) Quinhydrone electrode					
	(c) Saturated calomel electrode) Glass Electrode					
1	40. Which amongst the following auxochromes pr	es a shift towards higher ene	rgy wave length?				
	(a) -CH3 (b) -NHCH3	-CI (d) -C=0					
1	41. What is the wave number equivalent of 400 n	velength?					
	(a) 0.0025 cm^{-1} (b) 0.25 cm^{-1}	2500 cm ⁻¹ (d) 2500	0 cm ⁻¹				
1	42. Chloroformis stored in dark colored bottles be	e it is Oxidized in presence o	f light and air to a toxic				
	compound. Identify that.						
	(a) CH_2Cl_2 (b) $COCl_2$	CO (d) CCl ₄					
1	43. All 0f the given compounds show n* transition	ntify which one will have the h	ighest λmax?				
	(a) Methanol (b) Methylamine	Methyl iodide (d) Meth	yl bromide				
1	44. Given are the four statements about NMR:						
	[P] 13CMR is a less sensitive technique than F						
	[Q] Both 13C and H have I =1/2						
	[R] Precessional frequency of the nucleus is d						
	[S] Deuterium exchange studies can be performed to ascertain protons attached to heteroatoms.						
	Choose the correct combination of statements						
		S & Q are true while P is false					
		are true					
1	45. Which of the following statements is WRONG?						
	(a) The energy required for removing an elec-		given order :				
	lone pair < conjugated n < non conjugated						
	(b) Isotopic ratio is particularly useful for the	tion and estimation of number	r of S, CI and Br atoms ir				
	the compound in MS						
	(c) Neutral fragments and molecules do not ge						
	(d) The most intense peak in the MS is called						
1	46. Which one is an example of a bulk property de						
	(a) Fluorescence detector) Photo diode array detector					
	(c) Refractive index detector) UV detector					
14	47. The protons orthoto the nitro group in p-nitro	• 1000	of the Following types				
	(a) Chemically equivalent but magnetically not	· · · · · · · · · · · · · · · · · · ·					
	(b) Chemically and magnetically equivalent pro						
	(c) Chemically and magnetically nonequivalen						
	(d) Chemically nonequivalent but magnetionally	iveamon o no tons					

- 148. A 250 kg/mL solution of a drug gave an absorbance of 0.500 at 250 nm at a path length of 10 mm. what is the specific absorbance of the drug at 250 nm?
 - (a) 0.002 cm ⁻¹gm -1 1itre

(b) 0.002 cm ⁻¹gm⁻¹ dl

(c) 20 cm -1 gm-1 1itre

- (d) 20 cm -1 gm-1 dl
- 149. The peak at m/z 91in the mass spectrum for alkyl benzenes is due to which one of the followings
 - (a) Alpha fission

(b) Retro Diels-Alder rearrangement

(c) Mc-Laffartey rearrangement

- (d) Tropylium ion formation
- 150. Following statements are given for a chemical reaction: Change in Gibb's free energy of the reaction has a negative value. Change in Enthalpy of the reaction has a negative value Change in Entropy of the reaction has a positive value Based on the above statements choose the correct answer.
 - (a) The reaction is spontaneous.
 - (b) The reaction is non-spontaneous.
 - (c) The reaction could either be spontaneous or non-spontaneous.
 - (d) The reaction can never be spontaneous.

End of paper

ANSWER KEY GPAT 2011

1-c	2-d	3-c	4-b/d	5-d	6-a	7-c	8-b	9-d	10-с
11-a	12-a	13-a	14-b	15-с	16-b	17-с	18-d	19-b	20-b
21-a	22-d	23-b	24-c	25-b	26-c	27-a	28-b	29-с	30-b
31-b	32-d	33-c	34-a	35-d	36-с	37-b	38-b	39-b	40-b
41-b	42-d	43-c	44-d	45-a	46-b	47-b	48-d	49-d	50-c
51-b	52-b	53-d	54-c	55-d	56-b	57-b	58-c	59-b	60-a
61-a	62-c	63-b	64-d	65-b	66-c	67-d	68-d	69-b	70-b
71-b	72-d	73-a	74-b	75-a	76-b	77-d	78-a	79-d	80-a
81-a	82-b	83-a	84-d	85-d	86-c	87-b	88-b	89-b	90-a
91-c	92-a	93-c	94-d	95-b	96-с	97-b	98-d	99-с	100-d
101-a	102-d	103-d	104-b	105-c	106-a	107-a	108-a	109-d	110-a
111-b	112-c	113-b	114-b	115-a	116-a	117-b	118-d	119-c	120-a
121-c	122-b	123-d	124-b	125-a	126-a	127-d	128-b	129-a	130-a
131-c	132-c	133-d	134-a	135-d	136-c	137-d	138-d	139-d	140-d
141-d	142-b	143-d	144-d	145-d	146-c	147-b	148-d	149-d	150-a