Instructions

For the following questions answer them individually
Question 1
$6^{2}+7^{2}+8^{2}+9^{2}+10^{2}$
$\sqrt{7}+4 \sqrt{3}-\sqrt{4}+2 \sqrt{3}$ is equal to

A 305

B 355

C 366

D 330
Answer: D

Instructions
The bar graph given below shows the percentage distribution of the total production of a car manufacturing company into various models over two years.

Percentage of Six different types of Cars manufactured by a Company over Two Years

Question 2

The total producton of Type P vehicles in the years 2008 and 2011 is what percent of total production of Type Q vehicles in 2010 and 2014?

A 80

B 68.25

C 81.25

D 75
Answer: A

Question 3

The total production of Type P vehicles in the years 2008 and 2011 is what percent of total production of Type Q vehicles in 2010 and 2014?

A 75
B 60

C 45.5

D 54.5
Answer: D

Question 4

Approximate percentage decrease in production of Type Q vehicles from 2010 to 2011 is

A 16.7

B 14.3

C 10.1

D 12.5
Answer: A

Question 5

The ratio of total production of Type P vehicles to total production of Type Q vehicles over the years is

A $8: 5$

B $48: 41$

C $41: 48$

D 5:8
Answer: B

Question 6

In how many of the given years, was the production of Type P vehicles of the company more than the average production of this type vehicles in the given years?

A 5

B 4

C 3
D 2
Answer: C

Explanation:
average of Type p production $=\begin{gathered}\text { totalproduction } \\ \text { noofyears }\end{gathered}=\begin{gathered}100+125+200+225+275+275\end{gathered}=\begin{gathered}1200 \\ 6\end{gathered}=200$
years when production of type p is greater than average
$2012=225$
$2013=275$
$2014=275$
hence 3 years
Instructions
For the following questions answer them individually
Question 7
If $3\left(a^{2}+b^{2}+c^{2}\right)=(a+b+c)^{2}$, then the relation between \mathbf{a}, \mathbf{b} and \mathbf{c} is

A $a \neq b=c$

B $\quad \mathrm{a}=\mathrm{b}=\mathrm{c}$

C $a \neq b \neq c$
D $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$
Answer: B

Explanation:

solution
$3\left(a^{2}+b^{2}+c^{2}\right)=(a+b+c)^{2}$
we know
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$3\left(a^{2}+b^{2}+c^{2}\right)=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
$2\left(a^{2}+b^{2}+c^{2}\right)=2(a b+b c+c a)$
$\left(a^{2}+b^{2}+c^{2}\right)=(a b+b c+c a)$
as we can observe the symmetry
$a=b=c$

Question 8

A car covers four successive 7 km distances at speeds of $10 \mathrm{~km} / \mathrm{hour}, 20 \mathrm{~km} / \mathrm{hour}, 60 \mathrm{~km} / \mathrm{hour}$ respectively. Its average speed over this distance is

A $40 \mathrm{~km} / \mathrm{hour}$
B $20 \mathrm{~km} /$ hour

C $60 \mathrm{~km} /$ hour
D $30 \mathrm{~km} / \mathrm{hour}$
Answer: B

Question 9

A cylinder with base radius 8 cm and height 2 cm is melted to form a cone of height 6 cm , The radius of the cone will be

A 6 cm
B 5 cm

C 4 cm

D
8 cm

Answer: D

Explanation:

solution
base radius $r=8$
height of cylinder $=2$
height of cone $=6$
volume of the cylinder and cone remains the same
volume of cylinder = volume of cone
$\pi r^{2} h={ }_{3}^{1} \pi r^{2} h$ \{substituting the values\}
$\pi 8^{2} \times 2={ }_{3}^{1} \pi r^{2} \times 6$
$8^{2} \times 2={ }_{3}^{1} r^{2} \times 6$
$8^{2}=r^{2}$
radius of cone $=8 \mathrm{~cm}$
Question 10
A dealer fixed the price of an article 40% above the cost of production. While selling it he allows a discount of 20% and makes a profit of 48. The cost of production (in \%) of the article is

A 420

B 360

C 400

D 320
Answer: C

Question 11

Average of n numbers is a. Thefirst number is increased by 2 , second one is increased by 4 , the third one is increased by 8 and so on. The average of the new number is

A $a+2{ }^{2^{n}-1}$
B $\quad a+\frac{2^{n}-1}{n}$
C $\quad a+2{ }_{n}^{2^{n}+1}$
D $\quad a+2{ }^{2^{n+1}-1}$

Answer: A

Question 12

If $x=a \sin \theta-b \cos \theta, y=a \cos \theta+b \sin \theta$, then which of the following is true?

A $x^{2}+y^{2}=a^{2}+b^{2}$

B $\quad \begin{aligned} & x^{2} \\ & y^{2}\end{aligned}+{ }^{a^{2}} b^{2}=1$

C $x^{2}+y^{2}=a^{2}-b^{2}$
D $\begin{aligned} & x^{2} \\ & a^{2}\end{aligned}+\frac{y^{2}}{b^{2}}=1$
Answer: A

Explanation:

solution
$x=a \sin \theta-b \cos \theta\{$ squaring x$\}$
$y=a \cos \theta+b \sin \theta\{$ squaring y$\}$
$x^{2}=a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta$
$y^{2}=a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta$
adding both
we get
$x^{2}+y^{2}=a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta+a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta$
$x^{2}+y^{2}=a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta \quad\left\{\because \cos ^{2} \theta+\sin ^{2} \theta=1\right\}$
$x^{2}+y^{2}=a^{2}\left(\sin ^{2} \theta+\sin ^{2} \theta\right)+b^{2}\left(\cos ^{2} \theta+\cos ^{2} \theta\right)$
$x^{2}+y^{2}=a^{2}+b^{2}$

Question 13

Let $x=\sqrt{\sqrt{13}}+\sqrt{11}$ - $\sqrt{11}$ and $y=\stackrel{1}{x}$, then the value of $3 x^{2}-5 x y+3 y^{2}$ is

A 1717

B 1771

C 1171

D 1177
Answer: A

Explanation:

$x=\sqrt{\sqrt{13}}+\sqrt{11}$ and $y={ }_{x}^{1}$
So, clearly from the above $x y=1$
$x+y=\sqrt{\sqrt{13}+\sqrt{11}}+\sqrt{11}+\sqrt{13}-\sqrt{11}$
$=\begin{gathered}(\sqrt{13}+\sqrt{11})^{2}+(\sqrt{13}-\sqrt{11})^{2} \\ 13-11\end{gathered}$
$={ }_{2}^{13+11+2 \sqrt{143}+13+11-2 \sqrt{143}}$
$=\begin{gathered}48 \\ 2\end{gathered}$
$=24$
So, $x+y=24$
$3 x^{2}-5 x y+3 y^{2}=3(x+y)^{2}-11 x y$
$=3(24)^{2}-11(1)$
$=3 \times 576-11$
$=1728-11$
$=1717$

Question 14

If 64 buckets of water are removed from a cubical shaped water tank completely filled with water, $1 / 3$ of the tank remains filled with water. The length of each side of the tank is 1.2 m . Assuming that all buckets are of the same measures then the volume (in litres) of water contained by each bucketis

A 16
B 18

C 12

D 15
Answer: B

Explanation:

It is given that ,
${ }_{3}^{2}$ of tank is emptied using 64 buckets,
${ }_{3}^{2} V=64$ buckets
$\mathrm{V}=96$ buckets
Volume of each bucket
$={ }_{96}^{1.2 \times 1.2 \times 1.2 \times 1000}=18$ litres
So , the answer would be option b) 18
Question 15
In trapezium $\mathbf{A B C D}, \mathbf{A B} \mid \boldsymbol{C D}$ and $\mathbf{A B}=\mathbf{2 C D}$.Its diagonals intersect at 0 . If the area of $\triangle A O B=84 \mathrm{~cm}^{2}$, then the area of $\triangle \mathbf{C O D}$ is equalto
latek

A $42 \mathrm{~cm}^{2}$
B $21 \mathrm{~cm}^{2}$
C $72 \mathrm{~cm}^{2}$
D $26 \mathrm{~cm}^{2}$
Answer: B

Explanation:

areaof $\triangle C O D=21 \mathrm{~cm}^{2}$
So , the answer would be option b) $21 \mathrm{~cm}^{2}$

Question 16

Water tax is increased by 20% but its consumption is decreased by 20%. Then the increase or decrease in the expenditure of the money is

A 5% decrease

B 4% decrease

C No change
D 4\%increase
Answer: B

Explanation:

Expenditure $=$ Price \times Consumption
$\mathrm{e}=\mathrm{pc}$
When price is increased by 20% but its consumption is decreased by 20%,
$p^{\prime}=1.2 p$
$c^{\prime}=.8 \mathrm{c}$
$\mathrm{e}^{\prime}=.96 \mathrm{pc}$
Decrease \% in expenditure $={ }_{p c}^{.04 p c} \times 100=4 \%$
So, the answer would be option b) 4% decrease

Question 17

A number when divided by 361 gives a remainder 47 . If the same number is divided by 19 , the remainder obtained is

A 1

B 3

C 9

D 8
Answer: C

Explanation:

Let the number be N .
$\mathrm{N}=361 \times q+47$, where q is the quotient.
$\mathrm{N}=19^{2} \times q+47$
First part is divisible by 19 . Divide 47 by 19 , you will get remainder as 9 .
So, the answer would be option d)9.

Question 18

If $\left(\begin{array}{ll}p^{-1} q^{2} \\ p^{3} & q^{-2}\end{array}\right)+\left(\begin{array}{l}p^{5} q^{-3} \\ p^{-2}\end{array} q^{3}\right)^{\frac{1}{3}}=p^{a} q^{b}$, then the value of $\mathbf{a}+\mathbf{b}$, where \mathbf{p} and \mathbf{q} are different positive primes, is

A 1
B 2

C 0

D -1
Answer: E

Explanation:

The second term will have p^{7} raised to power ${ }_{3}^{1}$.
Question 19
In triangle $A B C, D E \| B C$ where D is a point on $A B$ and is a point on $A C$. $D E$ divides the area of $A A B C$ into two equal parts. Then $D B$: $A B$ is equal to

A $(\sqrt{2}+1): \sqrt{2}$
B $\quad \sqrt{2}:(\sqrt{2}+1)$
C $\sqrt{2}:(\sqrt{2}-1)$
D $(\sqrt{2}-1): \sqrt{2}$
Answer: D

Explanation:

B C
$D E \| B C$
DE divides the area of $\triangle A B C$ into two equal parts $=>\mathrm{D}$ and E are midpoints of AB and AC .
$\triangle A D E$ and $\triangle A B C$ aresimilar.
areaof $\triangle A B C \quad A B^{2}$
areaof $\triangle A D E=A D^{2}$
$A B^{2}$
$=>$
$A D^{2}=2$
$\Rightarrow \mathrm{AB}=\sqrt{2} A D$
$\Rightarrow \mathrm{AB}=\sqrt{2}(A B-B D)$
=> $(\sqrt{2}-1) A B=\sqrt{2} B D$
$\Rightarrow{ }^{B D}{ }_{A B}=\begin{gathered}(\sqrt{2}-1) \\ \sqrt{2}\end{gathered}$
So, the answer would be option d) $(\sqrt{2}-1): \sqrt{2}$

Question 20

A and B have their monthly incomes in the ratio $8: S$, While their monthly expenditures are in the ratio $S: 3$. If they have saved $=12,000$ and $\& \mathbf{1 0 , 0 0 0}$ monthly respectively, then the difference in their monthly income is

A Rs. 42,000

B Rs.44,000

C Rs.46,000
D Rs.52,000
Answer: A

Explanation:
Given that A and B have their monthly incomes in the ratio \& $\mid 5 S$
Not sure what \& represents. Please provide correct data.
Question 21
$A B C D$ is a cyclic quadrilateral, $A B$ and $D C$ when produced meet at P, if $P A=8 \mathrm{~cm}, P B=6 \mathrm{~cm}, P C=4 \mathrm{~cm}$, then the length (in cm) of PDis

A 6
B 12

C 8

D 10
Answer: B

Explanation:

Given that, $\mathrm{PA}=8 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}, \mathrm{PC}=4 \mathrm{~cm}$
As per tangent \& secant rule,
$P A \times P B=P D \times P C$
$\Rightarrow P D={ }_{4}^{8 \times 6}=12 \mathrm{~cm}$
Question 22
In a school there were 1554 students and the ratio of the number of the boys and girls was $4: 3$, After few days, 30 girls joined the school but few boys left; as a result the ratio of the boys and girls became 7:6. The number of boys who left the school is

A 84
B 76

C 86

Answer: B

Explanation:

Given that, In a school there were 1554 students and the ratio of the number of the boys and girls was $4: 3$.
If we consider number of boys as x and number of girls as y
=> $x: y=4: 3$
From the ratio and total number of students, we can determine that $x=888 \& y=666$
If 30 girls joined the school and number of boys left is considered as "a"
=> $888-a: 666+30=7: 6$
=> $888-a={ }_{6}^{7} \times 696$
=> $888-a=812$
=> $a=76$
Therefore, Number of boys left the school are 76.

Question 23

If $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$, then the value of $\tan \theta i s(\theta$ is acute $)$

A $\quad \begin{gathered}1 \\ \sqrt{3}\end{gathered}$

B $\quad \frac{1}{\sqrt{2}}$

C 1
D $\sqrt{3}$
Answer: A

Explanation:

Given that $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$=>3 \sin ^{2} \theta+3 \cos ^{2} \theta+4 \sin ^{2} \theta=4$
$=>3\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+4 \sin ^{2} \theta=4$
=> $3+4 \sin ^{2} \theta=4$
=> $4 \sin ^{2} \theta={ }_{3}^{4}$
=> $\sin ^{2} \theta={ }_{3}^{1}$
"> $\sin \theta=\sqrt{3}$
$\Rightarrow \theta=30^{\circ}$
Therefore, $\tan 30^{\circ}=\stackrel{1}{\sqrt{3}}$

Question 24

If $(B x-2 y):(2 x+3 y)=5: 6$, then one of value of $(\sqrt[3]{x}+\sqrt[3]{x}-\sqrt[3]{y})^{2}$ is?

A 25
B $\quad \begin{array}{r}1 \\ 5\end{array}$

C $\quad \begin{array}{r}1 \\ 25\end{array}$

D 5
Answer: A

Explanation:

value of b should be given.

Question 25

If $\tan A=n \tan B$ and $\sin A=m \sin B$, then the value of $\cos ^{2} A$ is

A $\begin{gathered}m^{2}+1 \\ n^{2}+1\end{gathered}$
B $\begin{gathered}m^{2}-1 \\ n^{2}-1\end{gathered}$
C $\begin{aligned} & m^{2}+1 \\ & n^{2}-1\end{aligned}$

D $\begin{gathered}m^{2}-1 \\ n^{2}+1\end{gathered}$

Answer: B

Explanation:

Given that $\tan A=n \tan B$ and $\sin A=m \sin B---$ (1)
$=\begin{gathered}\sin A \\ \cos A\end{gathered}=\begin{array}{r}\operatorname{nin} B \\ \mathrm{cos} B\end{array}$
$\Rightarrow m \sin B \quad \sin B$
=> $\cos A=\mathrm{n} \cos B$
$\Rightarrow \quad \begin{gathered}\cos A \\ \cos B= \\ n\end{gathered}$
Squaring equation (1), we get
$\Rightarrow \sin ^{2} A=m^{2} \sin ^{2} B$
=> $1-\cos ^{2} A=m^{2}\left(1-\cos ^{2} B\right)$
=> $\cos ^{2} B=\underset{m^{2}}{m^{2}-1+\cos ^{2} A}$
Squaring equation (2) and substituting equation (3) in equation (2), we get
$\Rightarrow \cos ^{2} A=\left[\begin{array}{c}m^{2} \\ n^{2}\end{array}\right]\left[\begin{array}{c}m^{2}-1+\cos ^{2} A \\ m^{2}\end{array}\right]$
$\Rightarrow n^{2} \cos ^{2} A=m^{2}-1+\cos ^{2} A$
$\Rightarrow \cos ^{2} A=\begin{gathered}m^{2}-1 \\ n^{2}-1\end{gathered}$

Question 26

In an office, 40% of the staff is female. 70% of the female staff and 50% of the male staff are married, The percentage of the unmarried staff in the office is

A 42

B 60

C 54

D 64
Answer: A

Explanation:

Here, let's consider total number of staff as 100 .
Given that 40% of staff is female. i.e., female staff count $=40$
Therefore, male staff count=60
Given that, 70% of female staff is married. i.e.., married female staff $=40 \times 70 / 100=28$
50% of male staff are married i.e., married male staff $=30$
Therefore, Unmarried staff $=100-30-28=42$. i.e.., 42%

Question 27

In an examination average mark obtained by the girls of a class is 85 and the average mark obtained by the boys of the same class is 87. If the girls and boys are in the ratio $4: 5$, average marks of the whole class (approx.) is closest to

A 86.4
B 86.1

C 85.9

D 86.5
Answer: B

Explanation:

Given that, Average mark obtained by girls in a class $=85$
and average mark obtained by boys in a class $=87$
If number of boys \& number of girls is considered as x \& y respectively, given that $\mathrm{x}: \mathrm{y}=4: 5=>\mathrm{x}=\begin{gathered}4 y \\ 5\end{gathered}$
Also, Sum of marks obtained by girls $=85 x$ and sum of marks obtained by boys $=87 y$
Therefore,
Average of whole class $=\begin{gathered}85 x+87 y \\ x+y\end{gathered}$
$\begin{gathered}85 \times{ }^{4 y}{ }^{4 y}+87 y \\ = \\ 5 \\ 5\end{gathered}+y$
$=86.1$

Question 28

Articles are marked at a price which gives a profit of $\mathbf{2 5 \%}$. After allowing a certain discount the profit reduces to $12{ }_{2}^{1} \%$. The discount percent is

A $\quad{ }_{2}^{121} \%$
B $\quad 10 \%$

C 12%

D 11.1%
Answer: B

Explanation:

Let the cost price be Rs. 100.
So , the marked price will be Rs. 125 .
After allowing a certain discount the profit reduces to $12{ }_{2}^{1} \%$,
price would be Rs. 112.5
Discount percent offered $=125 \times 100=10$
So, the answer would be option b) 10%.

Question 29

If $\backslash \sin A+\backslash \sin ^{\wedge} A=1$, thenthevalueof $\backslash \cos ^{\wedge} \mathrm{A}+\backslash \cos ^{\wedge} 4 \mathrm{~A}$ is

A $\quad 1{ }_{3}^{2}$

B 2
C $\quad 1{ }_{2}^{1}$

D 1
Answer: D

Explanation:

Information provided in the question is not in a understandable format. Please review and provide correct data.

Question 30

A manufacturer fixes his selling price at 33% over the cost of production. If cost of production goes up by $\mathbf{1 2 \%}$ and manufacturer raises his selling price by 10%, his percentage profit is

A 35

B $\quad 36{ }_{9}^{5} \%$
C $28{ }_{8}^{3} \%$
D $\quad 30{ }_{8}^{5} \%$
Answer: D

Explanation:

If we consider cost price as 100, then selling price is 133.
If cost price is increased by 12% and selling price is increased by 10%, then,
new cost price is 112 \& new selling price is 143.3
Percentage profit $={ }_{112}^{143.3-112} \times 100$
3430
= 112
$=30{ }_{8}^{5} \%$

Question 31

A boat moves downstream at the rate of 1 km in $7{ }_{2}^{1}$ minutes and upstream at the rate of 5 km an hour, What is the speed (in $\mathrm{km} / \mathrm{hour}$) of the boat in the still water?

A 8

B 4
C $\quad 3{ }_{2}^{1}$

D $6{ }_{2}^{1}$
Answer: D

Explanation:

Downstream speed $={ }_{2 \times 60}^{\substack{15 \\ 2 \times 6}}=8 \mathrm{~km} / \mathrm{hr}$
Upstream speed $=5 \mathrm{~km} / \mathrm{hr}$
Speed of boat in still water $={ }_{2}^{8+5}=6.5 \mathrm{~km} / \mathrm{hr}$
So, the answer would be option d) $6{ }_{2}^{1}$

Question 32

The greatest number among $3^{50}, 4^{40}, 5^{30}, 6^{20}$ is

A 4^{40}
B $\quad 5^{30}$
C 6^{20}

D 3^{50}
Answer: A

Explanation:

$3^{50}=243^{10}$
$4^{40}=1024^{10}$
$5^{30}=125^{10}$
$6^{20}=36^{10}$
So, the greatest would be 4^{40}.
So , the answer would be option a) 4^{40}.

Question 33

Give that the ratio of altitudes of two triangles is $4: 5$, ratio of their areas is $3: 2$. The ratio of their corresponding bases is

A $8: 15$
B $5: 8$
C $15: 8$
D 8:5
Answer: C

Explanation:

Given that ratio of altitudes of two triangles is 4:5
$h_{1} \quad 4$
$\Rightarrow h_{2}=5$
Also, Given that, ratio of areas of two triangles is $3: 2$

```
    \(\begin{aligned} & 1 \\ & 2\end{aligned} \times b_{1} \times h_{1}\)
\(2 \times b_{2} \times h_{2}=\)
2
    \(b_{1} \times 4=3\)
\(\begin{gathered}b_{1} \\ => \\ b_{2}\end{gathered}=\begin{gathered}15 \\ 8\end{gathered}\)
```

Therefore, ratios of the bases is $15: 8$

Question 34

If $\sec \theta-\tan \theta=\stackrel{1}{\sqrt{3}}$ then value of $\sec \theta \tan \theta$ is

A $\quad \stackrel{2}{3}$

B $\quad \stackrel{2}{\sqrt{3}}$

C $\quad \stackrel{1}{\sqrt{3}}$

D $\sqrt{3}$

Answer: A

Explanation:

Given that $\sec \theta-\tan \theta=\sqrt{3}$ \qquad
We know that $\sec ^{2} \theta-\tan ^{2} \theta=1$
$\Rightarrow(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=1$
$\Rightarrow \sec \theta+\tan \theta=\sqrt{3}$ \qquad
Solving equations (1) and (2), we get
$\sec \theta=\sqrt[2]{3}$ and $\tan \theta=\sqrt{3}$
Therefore $\sec \theta \tan \theta={ }_{3}^{2}$

Question 35

A man sells an article at 5% above its cost price. \f he had bough tit at 5% less than what he had paid for it and sold it at 2 less, he would have gained 10%. The cost price of the article is

A Rs. 100

B Rs. 300
C Rs. 200

D Rs. 400

Answer: D

Explanation:

Let the cost price be Rs.x
Then Selling price $=$ Rs. 1.05 x

If he had bough tit at 5% less than what he had paid for it and sold it at 2 less, he would have gained 10%,
new cost price $=.95 \mathrm{x}$
new selling price $=1.05-2$
${ }_{.95 x}^{1.05 x-2-.95 x} \times 100=10$
$x=400$
So, the answer would be option d)Rs. 400

Question 36

$$
(0.67 \times 0.67 \times 0.67) \times(0.33 \times 0.33 \times 0.33)
$$

The value of $(0.67 \times 0.67) \div(0.67 \times 0.33) \div(0.33 \times 0.33)$

A 11

B 0.34

C 1.1

D 3.4
Answer: B

Explanation:

Mathematical Operators provided in the question seems to be incorrect. Please review the question again and provide correct data.

Question 37

If $\mathbf{a}+\mathbf{b}=\mathbf{1}$, find the value of $a^{3}+b^{3}-a b-\left(a^{2}-b^{2}\right)^{2}$

A 0

B 1

C -1

D 2
Answer: A

Explanation:

$$
\begin{aligned}
& a^{3}+b^{3}-a b-\left(a^{2}-b^{2}\right)^{2} \\
& =(a+b)^{3}-3 a b(a+b)-a b-[(a-b)(a+b)]^{2} \\
& =1-3 a b-a b-(a-b)^{2} \\
& =1-4 a b-\left(a^{2}+b^{2}-2 a b\right) \\
& =1-4 a b-a^{2}-b^{2}+2 a b \\
& =1-\left(a^{2}+b^{2}+2 a b\right) \\
& =1-(a+b)^{2} \\
& =>1-1=0
\end{aligned}
$$

Question 38

$A B$ and $C D$ are two parallel chords of a circle of lengths 10 cm and 4 cm respectively. If the chords are on the same side of the centre and the distance between them is 3 cm , then the diameter of the circle is

A $2 \sqrt{29} \mathrm{~cm}$
B $\sqrt{21} \mathrm{~cm}$

C $2 \sqrt{21} \mathrm{~cm}$
D $\sqrt{29} \mathrm{~cm}$
Answer: A

Explanation:

$O A=O C=$ radius
$O E$ and $O F$ are perpendicular to $A B$ and $C D$.
$A E=E B=5 \mathrm{~cm}$
$C F=C D=2 \mathrm{~cm}$
Let $\mathrm{OE}=\mathrm{x}$
In $\triangle O A E$,
$O A^{2}=A E^{2}+O E^{2}$
$O A^{2}=5^{2}+x^{2}$
In $\triangle O C F$,
$O C^{2}=2^{2}+(x+3)^{2}$
$5^{2}+x^{2}=2^{2}+(x+3)^{2}$
$25+x^{2}=4+x^{2}+6 x+9$
$x={ }_{6}^{12}=2 \mathrm{~cm}$
$O A^{2}=5^{2}+x^{2}=25+4=29$
$O A=\sqrt{29}$
Diameter $=2 \sqrt{29}$
So, the answer would be option b) $2 \sqrt{29} \mathrm{~cm}$

Question 39

Let x be the least number, which when divided by 5, 6, 7 and 8 leaves a remainder 3 in each case but when divided by 9 leaves no remainder. The sum of digits of x is

A 22
B 21

C 18

D 24
Answer: C

Explanation:
Given that, Let x be the least number, which when divided by $5,6,7$ and \& leaves a remainder 3 . Not sure what \& represents.

Please provide correct data.

Question 40

Three science classes A, B and C take a Life Science test. The average score of class A is 83 . The average score of class B is 76. The average score of class C is 85 . The average score of class A and B is 79 and average score of class B and CG is 81 . Then the average score of classes A, B and C is.

A 80.5

B 81.5

C 80

D 81
Answer: B

Explanation:

Given that average score of class A is 83 . Let's consider number of students in class A as " x "
=> $\begin{aligned} \text { sumofscoresofclassA } \\ x\end{aligned}=83$
=> sum of scores of class $A=83 x$
Given that average score of class B is 76 . Let's consider number of students in class B as "y"
$={ }_{y}^{\text {sumofscoresofclassB }}=76$
=> sum of scores of class $B=76 y$
Given that average score of class C is 85 . Let's consider number of students in class C as " z "

```
    sumofscoresofclassC
=> \(\quad z \quad 85\)
=> sum of scores of class \(C=85 z\)
```

Similarly from other given statements,

```
sumofscoresofclasses \(A, B\)
    \(x+y \quad=79\)
\(\Rightarrow \quad \begin{gathered}83 x+76 y \\ x+y\end{gathered}=79\)
=> \(83 x+76 y=79 x+79 y\)
=> \(4 x=3 y=>x={ }_{4}^{3 y}\)
    sumofscoresofclassesB,C
and \(\begin{gathered}\text { sumofscoresofclasses } B, C \\ y+z\end{gathered}=81\)
    \(76 y+85 z\)
=> \(\quad \begin{aligned} & \\ & y+z\end{aligned}=81\)
=> \(76 y+85 z=81 y+81 z\)
=> \(4 \mathrm{z}=5 \mathrm{y}=>\mathrm{z}={ }_{4}^{5 y}\)
```

Therefore, average score of classes $A, B \& C$ is
$\left.83 x+76 y+85 z \quad \begin{array}{c}83\left(\begin{array}{c}3 y \\ 4 \\ 3\end{array}\right)+76 y+85\binom{5 y}{4}\end{array}\right)$
$x+y+z=\quad{ }_{4}^{3}+y+{ }_{4}^{5 y}=12=81.5$

Question 41

Two blends of a commodity costing ₹ 35 and ₹ 40 per kg respectively are mixed in the ratio $2: 3$ by weight. If one-fifth of the mixture is sold at ₹ 46 per kg and the remaining at the rate of $₹ 55$ per kg , the profit percent is

B 20

C 30

D 40
Answer: D

Explanation:

Let the amount for first blend be 2 kg and second blend be 3 kg .
Total cost price $=35 \times 2+3 \times 40=190$
Now , 1 kg will be sold at Rs 46 and remaining 4 kg at 55 , then total selling price will be
Total selling price $=46 \times 1+4 \times 55=266$
Profit $=266-190=76$
Profit \% $={ }_{190}^{76} \times 100=40$
So, the answer would be option d) 40 .

Question 42

If $x^{2}+y^{2}+z^{2}=\mathbf{x y}+\mathbf{y x}+\mathbf{z x}$, then the value of $5 x^{3} y^{3}+7 y^{4}+7 y^{4}+5 z^{2}+3 z^{2} x^{2}$

A 1

B 2

C -1

D 0
Answer: A

Explanation:

We know that if $x^{2}+y^{2}+z^{2}=\mathrm{xy}+\mathrm{yx}+\mathrm{zx}$, Then $\mathrm{x}=\mathrm{y}=\mathrm{z}$

$$
3 x^{4}+7 y^{4}+5 z^{4}
$$

Therefore, substituting $\mathrm{x}=\mathrm{y}=\mathrm{z}$ in given expression $5 x^{2} y^{2}+7 y^{2} z^{2}+3 z^{2} x^{2}$, we get
$=15 x^{4}$
$=1$

Question 43

Ram solid two horses at the same price, In one he gets a profit 10% and in the other he gets a loss of 10%. Then Ram gets

A no loss or profit
B 1% profit
C 2% loss

D 1\% loss

Answer: D

Explanation:

Shortcut Formula :In this kind of situation,
There is always loss of $\begin{gathered}x^{2} \\ 100\end{gathered}=100=1$,
where $\mathrm{x}=$ Profit/loss \%

Question 44

A and B can do a given piece of work in 8 days, Band C can do the same work in 12 days and A, B, C together complete it in 6 days. Number of days required to finish the work by A and C is

A 8

B 16

C 24

D 12
Answer: A

Explanation:

Given that Aand B can doa given piece of workin \& days. Not sure what \& means. Please provide correct data.
Question 45
Pipe A can fill an empty tank in 6 hours and pipe B in 8 hours. If both the pipes are opened and after 2 hours pipe A is dosed, how much time B will take to fill the remaining tank?

A $\quad 2 \stackrel{2}{5}$ hours
B $\quad 7{ }_{2}^{1}$ hours

C 2^{1} hours

D $3{ }_{3}^{1}$ hours
Answer: D

Explanation:

Given that Pipe B in \& hours. Please provide correct data.

Question 46

There is a number consisting of two digits, the digit in the units place is twice that in the tens place and if 2 be subtracted from the sum of the digits, the difference is equal to 6 thof the number. The number is

A 26
B 23

C 25

D 24
Answer: D

Explanation:
Let the two digit number be ab,
Where $a b=10 a+b$, and $b=2 * a$,
According to the Question,
$a+b-2=1 / 6(10 a+b)$
Multiply both side by 6,
$6 a+6 b-12=10 a+b$
$5 b=4 a+12$,
Subtracting $(b+6 a-12)$ on both sides,
Substituting $\mathrm{b}=2 * \mathrm{a}$,
$5(2 a)=4 a+12$,
$10 a=4 a+12$,
Subtract 4a on both sides,
$6 \mathrm{a}=12$,
Divide 6 on both sides,
$\mathrm{a}=2$,
$b=2 * 2=4$,
Therefore, the number is 24

Question 47

The value of
$\cot 41^{\circ} \cdot \cot 42^{\circ} \cdot \cot 43^{\circ} \cdot \operatorname{co44} \cdot \cot 45^{\circ} \cdot \cot 46^{\circ} \cdot \cot 47^{\circ} \cdot \cot 48^{\circ} \cdot \cot 49^{\circ}$

A 0

B 1
C $\quad{ }^{\sqrt{3}}$
D $\quad \begin{gathered}1 \\ \sqrt{2}\end{gathered}$

Answer: B

Question 48

A man purchases some orangesat the rate of 3 for 40 and the same quantity at 5 for $£ 60$.If he sells all the oranges at the rate of 3 for $\% 50$,find his gain orloss percent(to the nearest integer).

A 32% profit
B 34% loss
C 31% profit
D 33\% profit
Answer: A

Question 49

The perimeter of a rhombus is 60 cm and one ofits diagonal is 24 cm . The area (in sq. cm) of therhombus is

A 206
B 432

C 108

D 216

Question 50

A sum of money is paid back in two annual instalments of $\% 17,640$ each, allowing 5% compound interest compounded annually. The sum borrowed was

A RS. 32400

B RS. 32800

C RS. 32000

D RS. 32200
Answer: B

Question 51

A man starts from a place P and reaches the place Q in 7 hours. He travels ${ }_{4}^{1}$ th of the distance at $10 \mathrm{~km} / \mathrm{hour}$ and the remaining distance at $12 \mathrm{~km} /$ hour. The distance, in kilometre, between P and Qis

A 72

B 80

C 90

D 70
Answer: B

Explanation:
let the total distance be 4 xkm
$T=D / S$
as per question,
$(x / 10)+(3 x / 12)=7$
$(x / 10)+(x / 4)=7$
$(2 x+5 x) / 20=7$
$x=(7 * 20) / 7$
$\mathrm{x}=20 \mathrm{~km}$
total dist. traveled $=4 \mathrm{x}=4 * 20=80 \mathrm{~km}$
Question 52
If O is the circumcentre of a tnangle $A B C$ lying inside the triangle, then equal to

A 110°

B 90°

C 120°

D 60°
Answer: B

Question 53

The simple interest on a sum of money is $\stackrel{8}{25}$ of the sum. If the number of years is numerically half the rate percent per annum, then the rate percent per annum is

A 8

B 5
C $\quad 6{ }_{4}^{1}$

D 4
Answer: A

Explanation:
given,
Time $=R / 2$, Rate $=R$
Now $8=(25 \times R \times R) / 100 \times 2$
As, $\mathrm{SI}=(\mathrm{P} \times \mathrm{R} \times \mathrm{T}) 100$
$8=\left(R^{\wedge} 2\right) /(4 \times 2)=64=R^{\wedge} 2$
$\mathrm{R}=8$ \%
Question 54
. In $\triangle \mathrm{ABC}, \angle B A C=90^{\wedge} \backslash$ circand AD \perp $\mathrm{BC} \$ \$$.If $\mathrm{BD}=3 \mathrm{~cm}$ and $\mathrm{CD}=4 \mathrm{~cm}$ then the length (in cms) of AD is

A $2 \sqrt{3} v$

B 6

C 3.5

D 5
Answer: A

Question 55

Three glasses of equal volume contains acid mixed with water, The ratio of acid and water are 2: 3,3: 4 and 4: 5 respectively. Contents of these glasses are poured in a large vessel. The ratio of acid and water in the large vessel is

A 407:560
B 417:564

C $411: 540$

D 401:544
Answer: D

Question 56

If $A: B=2: 3$ and $B: C=3: 7$ then $A+B: B+C: C+A i s$

A $4: 8: 9$

B 5:8:9

C $4: 10: 9$
D 5:10:9
Answer: D

Question 57

The numerical values of the volume and the area of the lateral surface of a right circular cone are equal. If the height of the cone be h and radius, be r , then the value of $\stackrel{1}{h^{2}+r^{2}}$ is

A $3 / 1$
B $\quad 9 / 1$

C $1 / 9$

D $1 / 3$
Answer: C

Question 58

Two places P and Q are 162 km apart. A train leaves P for Q and simultaneously another train leaves Q for P . They meet at the end of 6 hours. If the former train travels $8 \mathrm{~km} /$ hour faster then the other, then speed of train from Qis

A $\quad 9 \underset{2}{2} \mathrm{~km} / \mathrm{hr}$
B $\quad 10{ }_{6}^{5} \mathrm{~km} / \mathrm{hr}$

C $12{ }_{6}^{5} \mathrm{~km} / \mathrm{hr}$
D $9 \stackrel{1}{2} \mathrm{~km} / \mathrm{hr}$
E $8{ }_{2}^{1} \mathrm{~km} / \mathrm{hr}$
Answer: A

Explanation:

Let the speed of the train from Q be $X \mathrm{~km} / \mathrm{hr}$
Then the speed of the train from P is $(X+8) k m / h r$
They meet each other at M after 6 hours travel
$\mathrm{PM}+\mathrm{MQ}=162 \mathrm{~km}$
$6(X+8)+6 X=162 \mathrm{~km}$
$12 X+48=162$
$12 X=162-48$
$12 \mathrm{X}=114$
$X=114 / 12$
$9(1 / 2) \mathrm{km} / \mathrm{hr}$

Question 59

If $\tan \theta-\cot \theta=0$ and θ is positive acute angle then the value of $\tan (\theta-15)$

A $\quad \begin{aligned} & 1 \\ & 3\end{aligned}$

B $\sqrt{3}$

C $\quad \stackrel{1}{\sqrt{3}}$

D 3
Answer: D

Question 60

The portion of a ditch 48 m long, 16.5 m wide and 4 m deep that can be filled with stones and earth available during excavation of a tunnel, cylindrical in shape, of a diameter 4 m and length $\mathbf{S 6} \mathbf{~ m i s}$

A $\stackrel{1}{9}$ part
B $\quad \stackrel{2}{9}$ part

C $\quad \stackrel{1}{2}$ part

D $\quad \stackrel{1}{4}$ part
Answer: B

Explanation:

Volume of the earth dugout as a tunnel
$=p i^{*} r^{\wedge} 2 * h=(22) / 7 \times 2 \times 2 \times 56=704 \mathrm{~m}^{\wedge} 3$
Volume of the ditch $=48 \times(33) / 2 \times 4$
$=24 \times 33 \times 4=3168$
Therefore, Part required $=704 / 3168=29$

Question 61

If $\left(x^{3}-y^{3}\right):\left(x^{2}+x y+y^{2}\right)=5: 1$ and $\left(x^{2}-y^{2}\right):(x-y)=7: 1$ then the value of $2 \mathrm{x}: 3 \mathrm{y}$ equals

A $2: 3$
B $4: 1$
C $4: 3$

D $3: 2$
Answer: B

Question 62

If $\mathbf{x}=a^{\frac{1}{2}}+a^{-1}, \mathbf{y}=a^{\frac{1}{2}}-a^{-1}$ then the value of $\left(x^{4}-x^{2} y^{2}-1\right)+\left(y^{4}-x^{2} y^{2}+1\right)$

B

C 12

D 13
Answer: B

Question 63

The marked price of a tape recorder is $\$ 12,600$. A festival discount of 5% is allowed onit. Further for cash payment, a second discount of 2% is given. The cash payment, in rupees, that is to be made for buying it is

A 11,780.60
B $\mathbf{1 1 , 0 7 3 . 6 0}$

C $11,703.60$

D 11,370.60

Answer: A

Question 64

A man walks at the rate of Skm/hour, he misses a train by 7 minutes. However, if he walks at the rate of $\mathrm{Gkm} / \mathrm{hour}$, he reaches the station 5 minutes before the arrival of the train. The distance covered by him to reach the station is

A 6 km

B 7 km

C 4 km
D 6.25 km
Answer: A

Explanation:

Lets assume the required distance $=\mathrm{xkm}$.
Difference in the times taken at two speeds $=12 \mathrm{mins}=1 / 5 \mathrm{hr}$.
Therefore $(x / 5-x / 6)=1 / 5$ or $(6 x-5 x)=6$ or $x=6 k m$.
So required distance $=6 \mathrm{~km}$

Question 65

If $x-\sqrt{3}-\sqrt{2}=0$ and $y-\sqrt{3}+\sqrt{2}=0$ then the value of $\left(x^{3}-20 \sqrt{2}\right)-\left(y^{3}+2 \sqrt{2}\right)$

A 3
B 2

C 0

D 1
Answer: C

The radil of two solid iron spheres are 1 cm and 6 cm respectively. A hollow sphere is made bymelting the two s pheres. If the external radius of the hollow sphere is 3 cm , then its thickness (in cm) is

A 0.5

B 2

C 1.5

D 1
Answer: D

Question 67
There is a wooden sphere of radius $6 \sqrt{3} \mathrm{~cm}$. The surface area of the largest possible cube cut outfrom the sphere will be

A $464 \sqrt{3} \mathrm{~cm}^{2}$
B $646 \sqrt{3} \mathrm{~cm}^{2}$

C $462 \mathrm{~cm}^{2}$
D $864 \mathrm{~cm}^{2}$
Answer: D

Question 68

If 60% of $A=30 \%$ of $B, B=40 \%$ of C and $C=x \%$ of A, then value of x is

A 200

B 500

C 300

D 800
Answer: B

Question 69

Aand B can do piece of work in 30 and 36 days respectively. They began the work together but A leaves after some days and B finished the remaining work in 25 days. After how many days did A leave?

A 6 days

B 5 days
C 11 days

D 10 days
Answer: B

Question 70

A sum of money placed at compound interest doubles itself in S years. It will amount to eight times Itself at the same rate of interest in

A 10

B 20

C 12

D 15
Answer: D

Explanation:

Formula for this is $\mathrm{n} 2=\mathrm{n} 1^{\wedge}(\mathrm{t} 2 / \mathrm{t} 1)$
$\mathrm{n}=$ Number of times
$\mathrm{t}=$ years
$\mathrm{n} 2=8=2^{\wedge} 3$
$\mathrm{n} 1=2$ (doubles.........given)
t2=?
$\mathrm{t} 1=5$
Applying this in formula
$2^{\wedge} 3=2^{\wedge}(\mathrm{t} 2 / 5) 2$
3=t2/5
t2 $=15$

Question 71

Quadnlateral $A B C D$ is circumscribed about a circle. If the lengths of $A B, B C, C D$ are $7 \mathrm{~cm}, 85$ cm and 9.2 cm respectively, then the length (in cm) of DA i

A 16.2

B 7.2

C 7.7
D 10.7
Answer: C

Explanation:

$A B+C D=B C+D A$ (Property)
$7+9.2=x+8.5$
$16.2=x+8.5$
$\mathrm{x}=7.7$
Question 72
A right prism has a triangular base whose sides are $13 \mathrm{~cm}, 20 \mathrm{~cm}$ and 21 cm . If the altitude of the prism is 9 cm , then its volume is

A $1134 \mathrm{~cm}^{3}$

B $1314 \mathrm{~cm}^{3}$

C $1413 \mathrm{~cm}^{3}$

D $1143 \mathrm{~cm}^{3}$
Answer: A

Question 73

300 gramsof sugar solution has 40% of sugar in it. How much sugar should be added to make it 50% in the solution?

A 60 gms

B 10 gms
C 80 gms
D 40 gms
Answer: A

Explanation:

Sugar Solution $=300 \mathrm{~kg}$.
40% Sugar $=(40 \times 300) / 100=120 \mathrm{~kg}$
Let the sugar added $=\mathrm{xkg}$.
$120+x=180 \mathrm{~kg}$
$x=60 \mathrm{~kg}$.

Question 74

The area of isosceles trapezium is $176 \mathrm{~cm}^{2}$ and the height h is $\underset{11}{2}$ th of the sum of its parallel sides if the ratio of the length of the parallel sides is $4: 7$, then the length of a diagonal (in cm) is

A $2 \sqrt{137}$
B $\sqrt{137}$

C 24

D 28
Answer: A

Explanation:

Area $=12$ (sum of parallel sides) \times distance between them
$12(7 x+4 x) \times 2 x=176$
$11 \times 2=176 \times 216$
$x=4$
$A B=7 \times 4=28 \mathrm{~cm}$
$C D=4 \times 4=16 \mathrm{~cm}$
$\mathrm{CM}=2 \times 4=8 \mathrm{~cm}$
$A M=A N+N M$
AN+16
$6+16=22$
($\mathrm{AN}=\mathrm{BM}>=12 / 2=6$)
$A^{\wedge} 2=C M^{\wedge} 2+A M^{\wedge} 2$
$\mathrm{AC}^{\wedge} 2=8^{\wedge} 2+22^{\wedge} 2$
$A C=\sqrt{ }(64+484)-----\sqrt{ }(548) \ldots=2 \sqrt{ }(137)$
Question 75
A and B are centres of twocircles of radii 11 cm and 6 cm , respectively. PQ is a direct common tangent to the circles. If $\overline{A B=13 \mathrm{~cm} \text {, }}$ then length of $\overline{P Q}$ will be

A 8.5 cm

B 12 cm

C 13 cm

D 17 cm
Answer: B

Question 76

A, B and C can do work separately in 16,32 and 48 days respectively. They started the work together but B leaving off \& days and C six daysbefore the completion of the work. In what time is the work finished?

A 12

B 10

C 14

D 9
Answer: A

Question 77

AD is perpendicular to the internal bisector of $\angle A B C$ of $\triangle \mathrm{ABC}$. DE is drawn through D and parallel to BC to meet AC at E . If the length of $A C$ is 12 cm , then the length of $A E$ (in cm) is

A 3
B 6
C 8
D 4
Answer: B

Explanation:

$\angle A B D=\angle M B D=$?(angle bisector)
$\mathrm{BD} \perp \mathrm{AM}$
$\angle B D A=\angle B D M=90^{\circ}$
It happen only in equilateral and isosceles triangle

AD=DM
i.e. $A D=A M / 2$

Given DE || BC
From Thales theorem
E will be mid point of AC.
$A C=12 \mathrm{~cm}$.
So,
$A E=6 \mathrm{~cm}$

Question 78

The average of five consecutive positive integers is n, If the next two integers are also included, the average of all these integers will

A increase by 1
B remains the same

C increase by 2

D increase by 1.5
Answer: A

Question 79

If $\mathrm{a}-\mathrm{a}-3=5$ then the value of $(a-3)^{3}-\binom{1}{a}^{3}$

A 14

B 5

C 2

D 7
Answer: A

Question 80

.A plane divides a night circular cone into two parts of equal volume. If the plane is parallel to the base, then the ratio, in which the height of the coneis divided, is

A $1: \sqrt[3]{2}$
B $1: \sqrt{2}$
C $1: \sqrt[3]{2}-1$

D $1: \sqrt[3]{2}+1$
Answer: C

Question 81

Let x be the smallest number, which when added to 2000 makes the resulting number divisible by $12,16,18$ and 21 . The sum of the digits of x is

A 4

B 7

C 6
D 5
Answer: B

Explanation:
L.C.M. of $12,16,18,21$ is 1008
then multiply by $2=1008 \times 2=2016$
sum of the number of 16 is $1+6=7$
Question 82
The diameter of each wheel of a car is 70 cm . If each wheel rotates 400 times per minute, then the speed of the $\mathbf{c a r}(\mathrm{in} \mathrm{km} / \mathrm{hr}$)is

A 52.8

B 0.528

C 528

D 5.28
Answer: A

Explanation:

Circumference of wheel $=2^{*}$ pi*r
$=(2 \times 3.14 \times 70) / 2=220 \mathrm{~cm}$
Speed per hour
$=(220 \times 400 \times 60) / 1000 \times 100=52.8 \mathrm{~km} / \mathrm{h}$

Question 83

The average age of 30 .students of a class is 14 years 4 months. After admission of 5 new students in the class the average becomes 13 years 9 months. The youngest one of the five new students is 9 years 11 months old. The average age of the remaining 4 new studentsis

A 13 years 6 months
B 10 years 4 months
C 11 years 2 months
D 12 years 4 months
Answer: B

Explanation:

According to the question,
Total age of 30 students $=30 \times(14$ years 4 months $)=30 \times 1413$
$=30 \times 433=430$ years
Total age of $(30+5)$ students $=35$ (13 years 9 months)
$=35 \times 1334=19254$ years
Total age of 5 students $=19254-430$
$=2054=51$ years 3 months
One of the new five student is $=9$ years 11 month old
Remaining 4 students age $=41$ years 4 months 4

Question 84

P and Q together can do a job in 6 days. Q and Rcan finish the same job in $60 / 7$ days. P started the work and worked for 3 days. Q and R continued for 6 days. Then the difference of days in which R and P can complete the job is

A 8
B 12
C 10

D 15
Answer: C

Question 85

Telegraph post is bent at a point above the ground due to storm. Its top just touches the ground at a distance of $10 \sqrt{3} \mathrm{~m}$ from its foot and makes an angle of 30° with the horizontal. Then height (in metres) of the telegraph post is

A 24
B 20

C 25
D 30
Answer: D

Question 86

If $5 \cos \theta+12 \sin \theta=13,0<\theta<90^{\circ}$ then value of $\sin \theta$

A $\begin{array}{r}12 \\ -13\end{array}$
B $\quad \begin{array}{r}5 \\ 13\end{array}$
C $\quad 12$

D $\quad \begin{gathered}6 \\ 13\end{gathered}$
Answer: C

Question 87

if $\mathbf{a}+{ }_{b}=\mathbf{b}+{ }_{c}=\mathbf{c}+{ }_{a}^{1}$ where as $\mathbf{a} \neq \mathbf{b} \neq \mathbf{c} \neq \mathbf{0}$ then the value of $a^{2} b^{2} c^{2}$ is

A -1
B 1

C abc

D 0
Answer: B

Question 88

The H.C.F and L.C.M of two numbers are 21 and 84 respectively. If the ratio of the two numbers is $1: 4$, then the larger of the two numbers is

A 48
B 108

C 12

D 84
Answer: D

Explanation:

Let the numbers be $\mathrm{x}, 4 \mathrm{x}$.
given,
HCF=21
LCM=84
We know that , $\mathrm{LCM} \times \mathrm{HCF}=1$ st number $\times 2$ nd number
$84 \times 21=x \times 4 x$
$1764=4 x^{\wedge} 2$
1764/4 = x^2
$441=x^{\wedge} 2$
$\mathrm{x}=21$
therefore one number is 21 and other is $84(21 \times 4)$.

Question 89

If 90 men can do a certain job in 16 days, working 12 hours/day, then the part of that work which can be completed by 70 men in 24 days, working 8hours/dayis

A $\quad \begin{aligned} & 2 \\ & 3\end{aligned}$
B $\quad \begin{array}{r}7 \\ \hline\end{array}$

C $\quad 1 \begin{aligned} & 1 \\ & \end{aligned}$

D $\begin{array}{r}5 \\ 8\end{array}$
Answer: B

Question 90

A sum of 7,930 is divided into 3 parts and given on loan at 5% simple interest to A, B and C for 2,3 and 4 years respectively. If the amounts of all three are equal after their respective periods of loan, then the A received a loan of

A Rs. 2750
B Rs. 2800

C Rs. 2760
D Rs. 3050
Answer: C

Explanation:
given,
$\mathrm{A}+((\mathrm{A} \times 5 \times 2) / 100)=\mathrm{B}+((\mathrm{B} \times 5 \times 3) / 100)=\mathrm{C}+((\mathrm{C} \times 5 \times 4) / 100)$
$110 A=115 B=120 C$
$22 \mathrm{~A}=23 \mathrm{~B}=24 \mathrm{C}$
Ratio of amount(by using L.C.M. of 22, 23 and 24)
276:264:253
A's loan $=(276) / 793 \times 7930=$ Rs. 2760

Question 91

The value of (coseca - sina) (seca - cosa) (tana + cota)

A 4

B 2

C 1
D 6
Answer: C

Question 92

There would be a 10% loss, if rice is sold at RS. 54 per kg . To earn a profit of 20%, the price of rice per kg will be

A Rs. 65
B Rs. 63
C Rs. 70
D Rs. 72

Answer: D

Question 93

If a hemisphere is melted and four spheres of equal volume are made, the radius of each sphere will be equal to

A radius of the hemisphere
B $\quad \underset{6}{1}$ th of the radius of the hemisphere
C $\quad \stackrel{1}{2}$ of the radius of the hemisphere

D $\stackrel{1}{4}$ th of the radius of the hemisphere
Answer: C

Question 94

60 kg of an alloy A is mixed with 100 kg of alloyB. If alloy A has lead and tin in the ratio $3 ; 2$ and alloy B has tin and copperin the ratio $1: 4$, the amount of tin in the new alloy is

A 53 kg
B 80 kg
C 44 kg

D 24 kg
Answer: C

Question 95

Base of a right pyramid is a square of side 10 cm . If the height of the pyramid is 12 cm , then its total surface area is

A $260 \mathrm{~cm}^{2}$
B $460 \mathrm{~cm}^{2}$

C $400 \mathrm{~cm}^{2}$
D $360 \mathrm{~cm}^{2}$
Answer: D

Explanation:
Area of base $=10 \times 10=100 \mathrm{~cm}^{\wedge} 2$
Area of 4 Phase
$=(12 \times$ Base \times slant height $) \times 4$
$(12 \times 10 \times 13) \times 4$ \qquad [Slant height $=\sqrt{ }(122+52)=\sqrt{ } 169=13$]
$=(64 \times 4)=260$
Total Surface area
260+100
$360 \mathrm{~cm}^{\wedge} 2$

Question 96

If a shopkeeper wants to give 20% discount on toy, he has to sell it for RS .300 . If he sells it at RS. 7405 , then his gain percentage

A 6%
B 4%

C 8%
D 5%
Answer: C

Question 97

The unit digit in the product $(2467)^{153} \times(841)^{72}$ is

A 1

B 3
C 7

D 9
Answer: C

Question 98

The interior angle of a regular polygon exceedsits extenior angle by 108°, The numberof sides ofthe polygonis

A 10

B 16
C 14

D 12
Answer: A

Explanation:

Let the exterior angle be x
given, the interior angle of a regular polygon exceeds its exterior angle by 108degree.
So, interior angle $=x+108$
as, the sum of interior angle and exterior angle $=180^{\circ}$
So,
Hence, polygon has 10 sides

Question 99

$$
1+{ }^{{ }_{3} 5^{5^{1+4}}}
$$

The value of 4 -

A $\quad \begin{array}{r}1 \\ 8\end{array}$
B $\quad \begin{array}{r}1 \\ \hline\end{array}$

C $\quad 116$

D $\quad \begin{array}{r}1 \\ 32\end{array}$
Answer: A

Question 100

The centroid of a $\triangle A B C$ is \mathbf{G}. The area of $\triangle a b c$ is $50 \mathrm{~cm}^{2}$, The area of $\triangle G B C$ is

A $40 \mathrm{~cm}^{2}$

B $30 \mathrm{~cm}^{2}$

C $20 \mathrm{~cm}^{2}$

D $10 \mathrm{~cm}^{2}$
Answer: C

