JEE ADVANCED - 2013

Paper-2
 PHYSICS

SECTION - 1 (One or more options correct Type)

This section contains $\mathbf{8}$ multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
*1. Two bodies, each of mass M, are kept fixed with a separation 2L. A particle of mass m is projected from the midpoint of the line joining their centres, perpendicular to the line. The gravitational constant is G. The correct statement(s) is (are)
(A) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $4 \sqrt{\frac{\mathrm{GM}}{\mathrm{L}}}$
(B) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $2 \sqrt{\frac{\mathrm{GM}}{\mathrm{L}}}$.
(C) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is

$$
\sqrt{\frac{2 \mathrm{GM}}{\mathrm{~L}}}
$$

(D) The energy of the mass m remains constant.

Sol. (B)

$$
\frac{-2 \mathrm{GMm}}{\mathrm{~L}}+\frac{1}{2} \mathrm{mv}^{2}=0
$$

$\Rightarrow \mathrm{v}=2 \sqrt{\frac{\mathrm{GM}}{\mathrm{L}}}$
Note: The energy of mass ' m ' means its kinetic energy (KE) only and not the potential energy of interaction between m and the two bodies (of mass M each) - which is the potential energy of the system.
*2. A particle of mass m is attached to one end of a mass-less spring of force constant k, lying on a frictionless horizontal plane. The other end of the spring is fixed. The particle starts moving horizontally from its equilibrium position at time $t=0$ with an initial velocity u_{0}. When the speed of the particle is $0.5 u_{0}$. It collides elastically with a rigid wall. After this collision,
(A) the speed of the particle when it returns to its equilibrium position is u_{0}.
(B) the time at which the particle passes through the equilibrium position for the first time is $t=\pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}$.
(C) the time at which the maximum compression of the spring occurs is $t=\frac{4 \pi}{3} \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$.
(D) the time at which the particle passes through the equilibrium position for the second time is $\mathrm{t}=\frac{5 \pi}{3} \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$.

Sol. (A, D)
$\mathrm{v}=\mathrm{u}_{0} \sin \omega \mathrm{t}$ (suppose t_{1} is the time of collision) $\frac{\mathrm{u}_{0}}{2}=\mathrm{u}_{0} \cos \omega \mathrm{t}_{1} \Rightarrow \mathrm{t}_{1}=\frac{\pi}{3 \omega}$
Now the particle returns to equilibrium position at time $t_{2}=2 t_{1}$ i.e. $\frac{2 \pi}{3 \omega}$ with the same mechanical energy i.e. its speed will u_{0}.

Let t_{3} is the time at which the particle passes through the equilibrium position for the second time.

$$
\begin{aligned}
\therefore \mathrm{t}_{3} & =\frac{\mathrm{T}}{2}+2 \mathrm{t}_{1} \\
& =\frac{\pi}{\omega}+\frac{2 \pi}{3 \omega}=\frac{5 \pi}{3 \omega} \\
& =\frac{5 \pi}{3} \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}
\end{aligned}
$$

Energy of particle and spring remains conserved.
3. A steady current I flows along an infinitely long hollow cylindrical conductor of radius R . This cylinder is placed coaxially inside an infinite solenoid of radius 2 R . The solenoid has n turns per unit length and carries a steady current I . Consider a point P at a distance r from the common axis. The correct statement(s) is (are)
(A) In the region $0<r<\mathrm{R}$, the magnetic field is non-zero
(B) In the region $R<r<2 R$, the magnetic field is along the common axis.
(C) In the region $\mathrm{R}<\mathrm{r}<2 \mathrm{R}$, the magnetic field is tangential to the circle of radius r , centered on the axis.
(D) In the region $r>2 R$, the magnetic field is non-zero.

Sol. (A, D)
Due to field of solenoid is non zero in region $0<r<R$ and non zero in region $r>2 R$ due to conductor.
*4. Two vehicles, each moving with speed u on the same horizontal straight road, are approaching each other. Wind blows along the road with velocity w. One of these vehicles blows a whistle of frequency f_{1}. An observer in the other vehicle hears the frequency of the whistle to be f_{2}. The speed of sound in still air is V. The correct statement(s) is (are)
(A) If the wind blows from the observer to the source, $f_{2}>f_{1}$.
(B) If the wind blows from the source to the observer, $f_{2}>f_{1}$.
(C) If the wind blows from observer to the source, $\mathrm{f}_{2}<\mathrm{f}_{1}$.
(D) If the wind blows from the source to the observer $f_{2}<f_{1}$.

Sol. (A, B)
If wind blows from source to observer
$\mathrm{f}_{2}=\mathrm{f}_{1}\left(\frac{\mathrm{~V}+\mathrm{w}+\mathrm{u}}{\mathrm{V}+\mathrm{w}-\mathrm{u}}\right)$
When wind blows from observer towards source
$\mathrm{f}_{2}=\mathrm{f}_{1}\left(\frac{\mathrm{~V}-\mathrm{w}+\mathrm{u}}{\mathrm{V}-\mathrm{w}-\mathrm{u}}\right)$
In both cases, $\mathrm{f}_{2}>\mathrm{f}_{1}$.
*5. Using the expression $2 \mathrm{~d} \sin \theta=\lambda$, one calculates the values of d by measuring the corresponding angles θ in the range θ to 90°. The wavelength λ is exactly known and the error in θ is constant for all values of θ. As θ increases from 0°,
(A) the absolute error in d remains constant.
(B) the absolute error in d increases
(C) the fractional error in d remains constant.
(D) the fractional error in d decreases.

Sol. (D)
$\mathrm{d}=\frac{\lambda}{2 \sin \theta}$
$\ln d=\ln \left(\frac{\lambda}{2}\right)-\ln \sin \theta$
$\frac{\Delta \mathrm{d}}{\mathrm{d}}=0-\frac{\cos \theta \mathrm{d} \theta}{\sin \theta}$
$\left(\frac{\Delta \mathrm{d}}{\mathrm{d}}\right)_{\text {max }}= \pm \cot \theta \Delta \theta$
Also $(\Delta \mathrm{d})_{\text {max }}=\mathrm{d} \cot \theta \Delta \theta$
$\frac{\lambda}{2 \sin \theta} \cot \theta \Delta \theta$
$=\frac{\lambda}{2} \frac{\cos \theta}{\sin ^{2} \theta} \Delta \theta$
As θ increases $\cot \theta$ decreases and $\frac{\cos \theta}{\sin ^{2} \theta}$ also decreases.
6. Two non-conducting spheres of radii R_{1} and R_{2} and carrying uniform volume charge densities $+\rho$ and $-\rho$, respectively, are placed such that they partially overlap, as shown in the figure. At all points in the overlapping region,

(A) the electrostatic field is zero
(B) the electrostatic potential is constant
(C) the electrostatic field is constant in magnitude
(D) the electrostatic field has same direction

Sol. (C, D)
In triangle $\mathrm{PC}_{1} \mathrm{C}_{2}$
$\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{d}}+\overrightarrow{\mathrm{r}}_{1}$
The electrostatic field at point P is
$\overrightarrow{\mathrm{E}}=\frac{\mathrm{K}\left(\rho \frac{4}{3} \pi \mathrm{R}_{1}^{3}\right) \stackrel{\rightharpoonup}{\mathrm{r}}_{2}}{\mathrm{R}_{1}^{3}}+\frac{\mathrm{K}\left(\rho \frac{4}{3} \pi \mathrm{R}_{2}^{3}\right)\left(-\overrightarrow{\mathrm{r}}_{1}\right)}{\mathrm{R}_{2}^{3}}$

$\overrightarrow{\mathrm{E}}=\mathrm{K} \rho \frac{4}{3} \pi\left(\mathrm{r}_{2}-\overrightarrow{\mathrm{r}}_{1}\right)$
$\overrightarrow{\mathrm{E}}=\frac{\rho}{3 \varepsilon_{0}} \overrightarrow{\mathrm{~d}}$
*7. The figure shows the variation of specific heat capacity (C) of a solid as a function of temperature (T). The temperature is increased continuously from 0 to 500 K at a constant rate. Ignoring any volume change, the following statement(s) is (are) correct to a reasonable approximation.
(A) the rate at which heat is absorbed in the range $0-100 \mathrm{~K}$ varies linearly with temperature T .
(B) heat absorbed in increasing the temperature from $0-100 \mathrm{~K}$ is less than the heat required for increasing the temperature from $400-500 \mathrm{~K}$.
(C) there is no change in the rate of heat absorption in range $400-500 \mathrm{~K}$.
(D) the rate of heat absorption increases in the range $200-300 \mathrm{~K}$.

Option (A) is correct because the graph between $(0-100 \mathrm{~K})$ appears to be a straight line upto a reasonable approximation.
Option (B) is correct because area under the curve in the temperature range $(0-100 \mathrm{~K})$ is less than in range ($400-500 \mathrm{~K}$.)
Option (C) is correct because the graph of C versus T is constant in the temperature range ($400-500 \mathrm{~K}$)
Option (D) is correct because in the temperature range $(200-300 \mathrm{~K})$ specific heat capacity increases with temperature.
8. The radius of the orbit of an electron in a Hydrogen-like atom is $4.5 \mathrm{a}_{0}$ where a_{0} is the Bohr radius. Its orbital angular momentum is $\frac{3 h}{2 \pi}$. It is given that h is Planck's constant and R is Rydberg constant. The possible wavelength(s), when the atom de-excites, is (are)
(A) $\frac{9}{32 R}$
(B) $\frac{9}{16 R}$
(C) $\frac{9}{5 R}$
(D) $\frac{4}{3 R}$

Sol. (A, C)
Given data
$4.5 \mathrm{a}_{0}=\mathrm{a}_{0} \frac{\mathrm{n}^{2}}{\mathrm{Z}}$
$\frac{\mathrm{nh}}{2 \pi}=\frac{3 \mathrm{~h}}{2 \pi}$
So $\mathrm{n}=3$ and $\mathrm{z}=2$
So possible wavelength are

$$
\begin{aligned}
& \frac{1}{\lambda_{1}}=\mathrm{RZ}^{2}\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right] \Rightarrow \lambda_{1}=\frac{9}{32 \mathrm{R}} \\
& \frac{1}{\lambda_{2}}=\mathrm{RZ}^{2}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right] \Rightarrow \lambda_{2}=\frac{1}{3 \mathrm{R}} \\
& \frac{1}{\lambda_{3}}=\mathrm{RZ}^{2}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \Rightarrow \lambda_{3}=\frac{9}{5 \mathrm{R}}
\end{aligned}
$$

SECTION - 2 : (Paragraph Type)

This section contains 4 paragraphs each describing theory, experiment, date etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of paragraph has only one correct answer along the four choice (A), (B), (C) and (D).

Paragraph for Questions 9 to 10

A small block of mass 1 kg is released from rest at the top of a rough track. The track is circular arc of radius 40 m . The block slides along the track without toppling and a frictional force acts on it in the direction opposite to the instantaneous velocity. The work done in overcoming the friction up to the point Q , as shown in the figure, below, is 150 J . (Take the acceleration due to gravity, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{-2}$).

*9. The speed of the block when it reaches the point Q is
(A) $5 \mathrm{~ms}^{-1}$
(B) $10 \mathrm{~ms}^{-1}$
(C) $10 \sqrt{3} \mathrm{~ms}^{-1}$
(D) $20 \mathrm{~ms}^{-1}$

Sol. (B) Using work energy theorem
$m g R \sin 30^{\circ}+W_{f}=\frac{1}{2} \mathrm{mv}^{2}$
$200-150=\frac{\mathrm{v}^{2}}{2}$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
*10. The magnitude of the normal reaction that acts on the block at the point Q is
(A) 7.5 N
(B) 8.6 N
(C) 11.5 N
(D) 22.5 N

Sol. (A)
$\mathrm{N}-\mathrm{mg} \cos 60^{\circ}=\frac{\mathrm{mv}}{\mathrm{R}}$
$\mathrm{N}=5+\frac{5}{2}=7.5$ Newton.

Paragraph for Questions 11 to 12

A thermal power plant produces electric power of 600 kW at 4000 V , which is to be transported to a place 20 km away from the power plant for consumers' usage. It can be transported either directly with a cable of large current carrying capacity or by using a combination of step-up and step-down transformers at the two ends. The drawback of the direct transmission is the large energy dissipation. In the method using transformers, the dissipation is much smaller. In this method, a step-up transformer is used at the plant side so that the current is reduced to a smaller value. At the consumers' end, a step-down transformer is used to supply power to the consumers at the specified lower voltage. It is reasonable to assume that the power cable is purely resistive and the transformers are ideal with the power factor unity. All the currents and voltage mentioned are rms values.
11. If the direct transmission method with a cable of resistance $0.4 \Omega \mathrm{~km}^{-1}$ is used, the power dissipation (in \%) during transmission is
(A) 20
(B) 30
(C) 40
(D) 50

Sol. (B)
For direct transmission

$$
\begin{aligned}
& \mathrm{P}=\mathrm{i}^{2} \mathrm{R}=(150)^{2}(0.4 \times 20)=1.8 \times 10^{5} \mathrm{w} \\
& \text { fraction }(\text { in } \%)=\frac{1.8 \times 10^{5}}{6 \times 10^{5}} \times 100=30 \%
\end{aligned}
$$

12. In the method using the transformers, assume that the ratio of the number of turns in the primary to that in the secondary in the step-up transformer is $1: 10$. If the power to the consumers has to be supplied at 200 V , the ratio of the number of turns in the primary to that in the secondary in the step-down transformer is
(A) $200: 1$
(B) $150: 1$
(C) $100: 1$
(D) $50: 1$

Sol. (A)

$$
\frac{40000}{200}=200
$$

Paragraph for Questions 13 to 14

A point Q is moving in a circular orbit of radius R in the $x-y$ plane with an angular velocity ω. This can be considered as equivalent to a loop carrying a steady current $\frac{\mathrm{Q} \omega}{2 \pi}$. A uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of the orbit remains constant. The application of the magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around closed loop. It is known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportionality constant γ.
13. The magnitude of the induced electric field in the orbit at any instant of time during the time interval of the magnetic field change, is
(A) $\frac{\mathrm{BR}}{4}$
(B) $\frac{\mathrm{BR}}{2}$
(C) BR
(D) 2 BR

Sol. (B)

$$
\begin{aligned}
& \mathrm{E}(2 \pi \mathrm{R})=\pi \mathrm{R}^{2} \frac{\mathrm{~dB}}{\mathrm{dt}} \\
& \mathrm{E}=\frac{\mathrm{RB}}{2}
\end{aligned}
$$

14. The change in the magnetic dipole moment associated with the orbit, at the end of time interval of the magnetic field change, is
(A) $-\gamma \mathrm{BQR}^{2}$
(B) $-\gamma \frac{\mathrm{BQR}^{2}}{2}$
(C) $\gamma \frac{\mathrm{BQR}^{2}}{2}$
(D) $\gamma \mathrm{BQR}^{2}$

Sol. (B)
$\Delta \mathrm{L}=\int \tau \mathrm{dt}$
$=Q\left(\frac{R}{2} B\right) R(1)$
$=\frac{\mathrm{QR}^{2} \mathrm{~B}}{2}$, in magnitude
$\Delta \mu=\gamma \Delta \mathrm{L}$
$=-\gamma \frac{\mathrm{BQR}^{2}}{2}$ (taking into account the direction)

Paragraph for Questions 15 to 16

The mass of nucleus ${ }_{Z}^{A} X$ is less than the sum of the masses of (A-Z) number of neutrons and Z number of protons in the nucleus. The energy equivalent to the corresponding mass difference is known as the binding energy of the nucleus. A heavy nucleus of mass M can break into two light nuclei of mass m_{1} and m_{2} only if $\left(m_{1}+m_{2}\right)<M$. Also two light nuclei of masses m_{3} and m_{4} can undergo complete fusion and form a heavy nucleus of mass M^{\prime} only if (m_{3} $\left.+m_{4}\right)>M^{\prime}$. The masses of some neutral atoms are given in the table below:

${ }_{1}^{1} \mathrm{H}$	1.007825 u	${ }_{1}^{2} \mathrm{H}$	2.014102 u	${ }_{1}^{3} \mathrm{H}$	3.016050 u	${ }_{2}^{4} \mathrm{He}$	4.002603 u
${ }_{3}^{6} \mathrm{Li}$	6.015123 u	${ }_{3}^{7} \mathrm{Li}$	7.016004 u	${ }_{30}^{70} \mathrm{Zn}$	69.925325 u	${ }_{34}^{82} \mathrm{Se}$	81.916709 u
${ }_{64}^{152} \mathrm{Gd}$	151.919803 u	${ }_{82}^{206} \mathrm{~Pb}$	205.974455 u	${ }_{83}^{209} \mathrm{Bi}$	208.980388 u	${ }_{84}^{210} \mathrm{Po}$	209.982876 u

15. The correct statement is
(A) The nucleus ${ }_{3}^{6} \mathrm{Li}$ can emit an alpha particle
(B) The nucleus ${ }_{84}^{210} \mathrm{Po}$ can emit a proton.
(C) Deuteron and alpha particle can undergo complete fusion.
(D) The nuclei ${ }_{30}^{70} \mathrm{Zn}$ and ${ }_{34}^{82} \mathrm{Se}$ can undergo complete fusion.

Sol. (C)
${ }_{3}^{6} \mathrm{Li} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{2} \mathrm{H}$
$\frac{\mathrm{Q}}{\mathrm{C}^{2}}=6.015123-4.002603-2.014102$
$0=-0.001582<0$
So no α-decay is possible
${ }_{84}^{210} \mathrm{P}_{0} \rightarrow{ }_{1}^{1} \mathrm{H}+{ }_{83}^{209} \mathrm{Bi}$
$\frac{\mathrm{Q}}{\mathrm{C}^{2}}=209.9828766-1.007825-208.980388=-0.005337<0$
So, this reaction is not possible
${ }_{1}^{2} \mathrm{H}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{3}^{6} \mathrm{Li}$
$\frac{\mathrm{Q}}{\mathrm{C}^{2}}=2.014102+4.002603-6.015123=0.001582>0$
So, this reaction is possible
${ }_{30}^{70} \mathrm{Zn}+{ }_{34}^{82} \mathrm{Se} \rightarrow{ }_{64}^{152} \mathrm{Gd}$
$\frac{\mathrm{Q}}{\mathrm{C}^{2}}=69.925325+81.916709-151.919803=-0.077769<0$
So this reaction is not possible
16. The kinetic energy (in keV) of the alpha particle, when the nucleus ${ }_{84}^{210} \mathrm{Po}$ at rest undergoes alpha decay, is
(A) 5319
(B) 5422
(C) 5707
(D) 5818

Sol. (A)

$$
\begin{aligned}
& { }_{84}^{210} \mathrm{Po} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{82}^{206} \mathrm{~Pb} \\
& \mathrm{Q}=(209.982876-4.002603-205.97455) \mathrm{C}^{2} \\
& =5.422 \mathrm{MeV} \\
& \text { from conservation of momentum }
\end{aligned}
$$

$$
\sqrt{2 \mathrm{~K}_{1}(4)}=\sqrt{2 \mathrm{~K}_{2}(206)}
$$

$$
4 \mathrm{~K}_{1}=206 \mathrm{~K}_{2}
$$

$$
\therefore \mathrm{K}_{1}=\frac{103}{2} \mathrm{~K}_{2}
$$

$$
\mathrm{K}_{1}+\mathrm{K}_{2}=5.422
$$

$$
\mathrm{K}_{1}+\frac{2}{103} \mathrm{~K}_{1}=5.422
$$

$$
\Rightarrow \quad \frac{105}{103} \mathrm{~K}_{1}=5.422
$$

$$
\therefore \quad \mathrm{K}_{1}=5.319 \mathrm{MeV}=5319 \mathrm{KeV}
$$

SECTION - 3 (Matching List Type)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
17. A right angled prism of refractive index μ_{1} is placed in a rectangular block of refractive index μ_{2}, which is surrounded by a medium of refractive index μ_{3}, as shown in the figure. A ray of light 'e' enters the rectangular block at normal incidence. Depending upon the relationships between μ_{1}, μ_{2} and μ_{3}, it takes one of the four possible paths 'ef', 'eg', 'eh', or 'ei'.

Match the paths in List I with conditions of refractive indices in List II and select the correct answer using the codes given below the lists:

	List I		List II
P.	$\mathrm{e} \rightarrow \mathrm{f}$	1.	$\mu_{1}>\sqrt{2} \mu_{2}$
Q.	$\mathrm{e} \rightarrow \mathrm{g}$	2.	$\mu_{2}>\mu_{1}$ and $\mu_{2}>\mu_{3}$
R.	$\mathrm{e} \rightarrow \mathrm{h}$	3.	$\mu_{1}=\mu_{2}$
S.	$\mathrm{e} \rightarrow \mathrm{i}$	4.	$\mu_{2}<\mu_{1}<\sqrt{2} \mu_{2}$ and $\mu_{2}>\mu_{3}$

Codes:

	P	Q	R	S
(A)	2	3	1	4
(B)	1	2	4	3
(C)	4	1	2	3
(D)	2	3	4	1

Sol. (D)
P. $\rightarrow(2) ;$ Q. $\rightarrow(3) ;$ R. $\rightarrow(4) ;$ S. \rightarrow (1)
P. $\mu_{2}>\mu_{1} \ldots \quad$ (towards normal)

$$
\mu_{2}>\mu_{3} \ldots \quad \text { (away from normal) }
$$

Q. $\quad \mu_{1}=\mu_{2} \ldots \quad$ (No change in path)

$$
\angle \mathrm{i}=0 \Rightarrow \angle \mathrm{r}=0 \text { on the block. }
$$

R. $\mu_{1}>\mu_{2} \ldots$ (Away from the normal)

$$
\mu_{2}>\mu_{3} \ldots \quad \text { (Away from the normal) }
$$

$$
\mu_{1} \times \frac{1}{\sqrt{2}}=\mu_{2} \sin r \Rightarrow \sin r=\frac{\mu_{1}}{\sqrt{2} \mu_{2}} . \text { Since } \sin r<1 \Rightarrow \mu_{1}<\sqrt{2} \mu_{2}
$$

S. For TIR : $45^{\circ}>\mathrm{C} \Rightarrow \sin 45^{\circ}>\sin \mathrm{C} \Rightarrow \frac{1}{\sqrt{2}}>\frac{\mu_{2}}{\mu_{1}} \Rightarrow \mu_{1}>\sqrt{2} \mu_{2}$
*18. Match List I with List II and select the correct answer using the codes given below the lists:

	List I		List II
P.	Boltzmann Constant	1.	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
Q.	Coefficient of viscosity	2.	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
R.	Plank Constant	3.	$\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]$
S.	Thermal conductivity	4.	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$

Codes:

	P	Q	R	S
(A)	3	1	2	4
(B)	3	2	1	4
(C)	4	2	1	3
(D)	4	1	2	3

Sol. (C)
P. \rightarrow (4) ; Q. $\rightarrow(2)$; R. $\rightarrow(1)$; S. \rightarrow (3)
P. $\quad \mathrm{KE}=\frac{3}{2} \mathrm{~K}^{\prime} \mathrm{T} \Rightarrow\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]=\mathrm{K}^{\prime}[\mathrm{K}] \Rightarrow \mathrm{K}^{\prime}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
Q. $\quad \mathrm{F}=6 \pi \eta \mathrm{rv} \Rightarrow \quad\left[\mathrm{MLT}^{-2}\right]=\eta[\mathrm{L}]\left[\mathrm{LT}^{-1}\right] \Rightarrow \eta=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
R. $\quad \mathrm{E}=\mathrm{hf} \Rightarrow\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]=\frac{\mathrm{h}}{[\mathrm{T}]} \Rightarrow \mathrm{h}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
S. $\quad \frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{K}^{\prime} \mathrm{A}(\Delta \mathrm{T})}{\Delta \mathrm{x}} \Rightarrow \frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{T}]}=\frac{\mathrm{k}\left[\mathrm{L}^{2}\right]\left[\mathrm{K}^{\prime}\right]}{[\mathrm{L}]}$

$$
\mathrm{K}^{\prime}=\left[\mathrm{MLT}^{-3} \mathrm{~K}^{-1}\right]
$$

*19. One mole of mono-atomic ideal gas is taken along two cyclic processes $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{G} \rightarrow \mathrm{E}$ and $\mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{H} \rightarrow \mathrm{E}$ as shown in the PV diagram. The processes involved are purely isochoric, isobaric, isothermal or adiabatic.

Match the paths in List I with the magnitudes of the work done in List II and select the correct answer using the codes given below the lists.

	List I		List II
P.	$\mathrm{G} \rightarrow \mathrm{E}$	1.	$160 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2$
Q.	$\mathrm{G} \rightarrow \mathrm{H}$	2.	$36 \mathrm{P}_{0} \mathrm{~V}_{0}$
R.	$\mathrm{F} \rightarrow \mathrm{H}$	3.	$24 \mathrm{P}_{0} \mathrm{~V}_{0}$
S.	$\mathrm{F} \rightarrow \mathrm{G}$	4.	$31 \mathrm{P}_{0} \mathrm{~V}_{0}$

Codes:

	P	Q	R	S
(A)	4	3	2	1
(B)	4	3	1	2
(C)	3	1	2	4
(D)	1	3	2	4

Sol. (A)
P. \rightarrow (4) ; Q. \rightarrow (3); R. \rightarrow (2); S. \rightarrow (1)

Apply $\mathrm{PV}^{1+2 / 3}=$ constant for F to H .
$\left(32 \mathrm{P}_{0}\right) \mathrm{V}_{0}^{5 / 3}=\mathrm{P}_{0} \mathrm{~V}_{\mathrm{H}}^{5 / 3} \Rightarrow \mathrm{~V}_{\mathrm{H}}=8 \mathrm{~V}_{0}$
For path $\mathrm{FG} \mathrm{PV}=$ constant
$\Rightarrow\left(32 \mathrm{P}_{0}\right) \mathrm{V}_{0}=\mathrm{P}_{0} \mathrm{~V}_{\mathrm{G}} \Rightarrow \mathrm{V}_{\mathrm{G}}=32 \mathrm{~V}_{0}$
Work done in $\mathrm{GE}=31 \mathrm{P}_{0} \mathrm{~V}_{0}$
Work done in $\mathrm{GH}=24 \mathrm{P}_{0} \mathrm{~V}_{0}$
Work done in $\mathrm{FH}=\frac{\mathrm{P}_{\mathrm{H}} \mathrm{V}_{\mathrm{H}}-\mathrm{P}_{\mathrm{F}} \mathrm{V}_{\mathrm{F}}}{(-2 / \mathrm{f})}=36 \mathrm{P}_{0} \mathrm{~V}_{0}$

Work done in $\mathrm{FG}=\mathrm{RT} \ln \left(\frac{\mathrm{V}_{\mathrm{G}}}{\mathrm{V}_{\mathrm{F}}}\right)$ $=160 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2$.
20. Match List I of the nuclear processes with List II containing parent nucleus and one of the end products of each process and then select the correct answer using the codes given below the lists:

	List I		List II
P.	Alpha decay	1.	${ }_{8}^{15} \mathrm{O} \rightarrow{ }_{7}^{15} \mathrm{~N}+\ldots .$.
Q.	$\beta+$ decay	2.	${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+\ldots .$.
R.	Fission	3.	${ }_{83}^{185} \mathrm{Bi} \rightarrow{ }_{82}^{184} \mathrm{~Pb}+\ldots .$.
S.	Proton emission	4.	${ }_{94}^{239} \mathrm{Pu} \rightarrow{ }_{57}^{140} \mathrm{La}+\ldots .$.

Codes:

	P	Q	R	S
(A)	4	2	1	3
(B)	1	3	2	4
(C)	2	1	4	3
(D)	4	3	2	1

Sol. (C)
P. $\rightarrow(2)$; Q. $\rightarrow(1) ;$ R. \rightarrow (4); S. $\rightarrow(3)$
${ }_{8}^{15} \mathrm{O} \rightarrow{ }_{7}^{15} \mathrm{~N}+{ }_{1}^{0} \beta \quad$ (Beta decay)
${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He} \quad$ (Alpha decay)
${ }_{83}^{185} \mathrm{Bi} \rightarrow{ }_{82}^{184} \mathrm{~Pb}+{ }_{1}^{1} \mathrm{H} \quad$ (Proton emission)
${ }_{94}^{239} \mathrm{Ph} \rightarrow{ }_{57}^{140} \mathrm{La}+{ }_{37}^{99} \mathrm{Rb} \quad$ (fission)

JEE ADVANCED - 2013
 Paper - 2 MATHEMATICS

SECTION - 1 : (One or more option correct Type)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
41. For $\mathrm{a} \in \mathrm{R}$ (the set of all real numbers), $\mathrm{a} \neq-1, \lim _{n \rightarrow \infty} \frac{\left(1^{a}+2^{a}+\ldots+n^{a}\right)}{(n+1)^{a-1}[(n a+1)+(n a+2)+\ldots+(n a+n)]}=\frac{1}{60}$.

Then $\mathrm{a}=$
(A) 5
(B) 7
(C) $\frac{-15}{2}$
(D) $\frac{-17}{2}$

Sol. (B, D)
Required limit $=\frac{\int_{0}^{1} x^{a} d x}{\int_{0}^{1}(a+x) d x}=\frac{2}{(2 a+1)(a+1)}=\frac{2}{120}$
$\Rightarrow \mathrm{a}=7$ or $-\frac{17}{2}$.
*42. Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $2 \sqrt{7}$ on y-axis is (are)
(A) $x^{2}+y^{2}-6 x+8 y+9=0$
(B) $x^{2}+y^{2}-6 x+7 y+9=0$
(C) $x^{2}+y^{2}-6 x-8 y+9=0$
(D) $x^{2}+y^{2}-6 x-7 y+9=0$

Sol. (A), (C)
Equation of circle can be written as
$(x-3)^{2}+y^{2}+\lambda(y)=0$
$\Rightarrow x^{2}+y^{2}-6 x+\lambda y+9=0$.
Now, (radius) ${ }^{2}=7+9=16$
$\Rightarrow 9+\frac{\lambda^{2}}{4}-9=16$
$\Rightarrow \lambda^{2}=64 \Rightarrow \lambda= \pm 8$.
\therefore Equation is $x^{2}+y^{2}-6 x \pm 8 y+9=0$.
43. Two lines $L_{1}: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_{2}: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value(s)
(A) 1
(B) 2
(C) 3
(D) 4

Sol. (A, D)
$\frac{x-5}{0}=\frac{y-0}{3-\alpha}=\frac{z-0}{-2}$
$\frac{\mathrm{x}-\alpha}{0}=\frac{\mathrm{y}}{-1}=\frac{\mathrm{z}}{2-\alpha}$
will be coplanar if shortest distance is zero
$\Rightarrow\left|\begin{array}{lll}5-\alpha & 0 & 0 \\ 0 & 3-\alpha & -2 \\ 0 & -1 & 2-\alpha\end{array}\right|=0$
$(5-\alpha)\left(\alpha^{2}-5 \alpha+4\right)=0, \alpha=1,4,5$
so $\alpha=1,4$
Alternate Solution:
As $x=5$ and $x=\alpha$ are parallel planes so the remaining two planes must be coplanar.
So, $\frac{3-\alpha}{-1}=\frac{-2}{2-\alpha} \Rightarrow \alpha^{2}-5 \alpha+4=0 \Rightarrow \alpha=1,4$.
*44. In a triangle PQR, P is the largest angle and $\cos \mathrm{P}=\frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)
(A) 16
(B) 18
(C) 24
(D) 22

Sol. (B), (D)
Let
$\mathrm{s}-\mathrm{a}=2 \mathrm{k}-2, \mathrm{~s}-\mathrm{b}=2 \mathrm{k}, \mathrm{s}-\mathrm{c}=2 \mathrm{k}+2, \mathrm{k} \in \mathrm{I}, \mathrm{k}>1$
Adding we get,
$\mathrm{s}=6 \mathrm{k}$
So, $a=4 k+2, b=4 k, c=4 k-2$
Now, $\cos \mathrm{P}=\frac{1}{3}$

$\Rightarrow \frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}=\frac{1}{3} \Rightarrow 3\left[(4 \mathrm{k})^{2}+(4 \mathrm{k}-2)^{2}-(4 \mathrm{k}+2)^{2}\right]=2 \times 4 \mathrm{k}(4 \mathrm{k}-2)$
$\Rightarrow 3\left[16 \mathrm{k}^{2}-4(4 \mathrm{k}) \times 2\right]=8 \mathrm{k}(4 \mathrm{k}-2)$
$\Rightarrow 48 \mathrm{k}^{2}-96 \mathrm{k}=32 \mathrm{k}^{2}-16 \mathrm{k}$
$\Rightarrow 16 \mathrm{k}^{2}=80 \mathrm{k} \Rightarrow \mathrm{k}=5$
So, sides are $22,20,18$
*45. Let $\mathrm{w}=\frac{\sqrt{3}+i}{2}$ and $\mathrm{P}=\left\{\mathrm{w}^{\mathrm{n}}: \mathrm{n}=1,2,3, \ldots ..\right\}$. Further $\mathrm{H}_{1}=\left\{z \in C: \operatorname{Re} z>\frac{1}{2}\right\}$ and $\mathrm{H}_{2}=$ $\left\{z \in C: \operatorname{Re} z<\frac{-1}{2}\right\}$, where C is the set of all complex numbers. If $\mathrm{z}_{1} \in \mathrm{P} \cap \mathrm{H}_{1}, \mathrm{z}_{2} \in \mathrm{P} \cap \mathrm{H}_{2}$ and O represents the origin, then $\angle \mathrm{z}_{1} \mathrm{Oz}_{2}=$
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{5 \pi}{6}$

Sol. (C), (D)
$w=\frac{\sqrt{3}+\mathrm{i}}{2}=\mathrm{e}^{\frac{\mathrm{i} \pi}{6}}$, so $\mathrm{w}^{\mathrm{n}}=\mathrm{e}^{\mathrm{i}\left(\frac{\mathrm{n} \pi}{6}\right)}$
Now, for $z_{1}, \cos \frac{n \pi}{6}>\frac{1}{2}$ and for $z_{2}, \cos \frac{n \pi}{6}<-\frac{1}{2}$

Possible position of z_{1} are A_{1}, A_{2}, A_{3} whereas of z_{2} are B_{1}, B_{2}, B_{3} (as shown in the figure)
So, possible value of $\angle \mathrm{z}_{1} \mathrm{Oz}_{2}$ according to the given options is $\frac{2 \pi}{3}$ or $\frac{5 \pi}{6}$.
*46. If $3^{x}=4^{x-1}$, then $x=$
(A) $\frac{2 \log _{3} 2}{2 \log _{3} 2-1}$
(B) $\frac{2}{2-\log _{2} 3}$
(C) $\frac{1}{1-\log _{4} 3}$
(D) $\frac{2 \log _{2} 3}{2 \log _{2} 3-1}$

Sol. (A, B, C)
$\log _{2} 3^{x}=(x-1) \log _{2} 4=2(x-1)$
$\Rightarrow x \log _{2} 3=2 x-2$
$\Rightarrow \mathrm{x}=\frac{2}{2-\log _{2} 3}$
Rearranging, we get
$\mathrm{x}=\frac{2}{2-\frac{1}{\log _{3} 2}}=\frac{2 \log _{3} 2}{2 \log _{3} 2-1}$
Rearranging again,
$x=\frac{\log _{3} 4}{\log _{3} 4-1}=\frac{\frac{1}{\log _{4} 3}}{\frac{1}{\log _{4} 3}-1}=\frac{1}{1-\log _{4} 3}$.
47. Let ω be a complex cube root of unity with $\omega \neq 1$ and $\mathrm{P}=\left[\mathrm{p}_{\mathrm{ij}}\right]$ be a $\mathrm{n} \times \mathrm{n}$ matrix with $\mathrm{p}_{\mathrm{ij}}=\omega^{\mathrm{i}+\mathrm{j}}$. Then $\mathrm{P}^{2} \neq 0$, when $\mathrm{n}=$
(A) 57
(B) 55
(C) 58
(D) 56

Sol. (B, C, D)
$\mathrm{P}=\left[\begin{array}{lllll}\omega^{2} & \omega^{3} & \omega^{4} & \ldots . . & \omega^{\mathrm{n}+2} \\ \omega^{3} & \omega^{4} & \omega^{5} & \ldots . . & \omega^{\mathrm{n}+3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \omega^{\mathrm{n}+2} & \omega^{\mathrm{n}+3} & \ldots . . & \ldots . . & \omega^{2 \mathrm{n}+4}\end{array}\right]$
$\mathrm{P}^{2}=\left[\begin{array}{lllc}\omega^{4}+\omega^{6} \ldots . . & \omega^{5}+\omega^{7}+\omega^{9} & \ldots \ldots & \ldots \ldots \\ \omega^{5}+\omega^{7}+\omega^{9} \ldots . . & \ldots . . & \ldots \ldots & \ldots \ldots \\ \vdots & \vdots & \vdots & \ldots \ldots \\ \omega^{\mathrm{n}+4}+\omega^{\mathrm{n}+6} \ldots . . & \ldots \ldots & \ldots \ldots & \omega^{2 \mathrm{n}+4}+\omega^{2 \mathrm{n}+6} \ldots . .\end{array}\right]$

$$
\mathrm{P}^{2}=\text { Null matrix if } \mathrm{n} \text { is a multiple of } 3
$$

48. The function $f(x)=2|x|+|x+2|-\|x+2|-2| x\|$ has a local minimum or a local maximum at $x=$
(A) -2
(B) $\frac{-2}{3}$
(C) 2
(D) $\frac{2}{3}$

Sol. (A), (B)
As, $\frac{\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})-|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})|}{2}=\operatorname{Min}(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}))$
$\Rightarrow \frac{2|x|+|x+2|-||x+2|-2| x| |}{2}=\operatorname{Min}(|2 x|,|x+2|)$

According to the figure shown, points of local minima/maxima are $\mathrm{x}=-2, \frac{-2}{3}, 0$.

SECTION - 2 : (Paragraph Type)

This section contains 6 multiple choice questions relating to three paragraphs with two questions on each paragraph. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Questions 49 and 50

Let $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $\mathrm{f}(0)=$ $f(1)=0$ and satisfies $f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$.
49. Which of the following is true for $0<x<1$?
(A) $0<f(x)<\infty$
(B) $-\frac{1}{2}<\mathrm{f}(\mathrm{x})<\frac{1}{2}$
(C) $-\frac{1}{4}<\mathrm{f}(\mathrm{x})<1$
(D) $-\infty<\mathrm{f}(\mathrm{x})<0$

Sol. (D)
Let $g(x)=e^{-x} f(x)$
and $\mathrm{g}^{\prime \prime}(\mathrm{x})>1>0$
So, $g(x)$ is concave upward and $g(0)=g(1)=0$
Hence, $\mathrm{g}(\mathrm{x})<0 \forall \mathrm{x} \in(0,1)$
$\Rightarrow \mathrm{e}^{-\mathrm{x}} \mathrm{f}(\mathrm{x})<0$
$\mathrm{f}(\mathrm{x})<0 \forall \mathrm{x} \in(0,1)$
Alternate Solution
$f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}$
$\Rightarrow\left(\mathrm{f}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}-\frac{\mathrm{x}^{2}}{2}\right)^{\prime \prime} \geq 0$
Let $g(x)=f(x) e^{-x}-\frac{x^{2}}{2}$
$\mathrm{g}(0)=0, \mathrm{~g}(1)=-\frac{1}{2}$
Since g is concave up so it will always lie below the chord joining the extremities which is $y=-\frac{x}{2}$
$\Rightarrow \mathrm{f}(\mathrm{x}) \mathrm{e}^{-\mathrm{x}}-\frac{\mathrm{x}^{2}}{2}<-\frac{\mathrm{x}}{2}$
$\Rightarrow \mathrm{f}(\mathrm{x})<\frac{\left(\mathrm{x}^{2}-\mathrm{x}\right) \mathrm{e}^{\mathrm{x}}}{2}<0 \quad \forall \mathrm{x} \in(0,1)$
50. If the function $\mathrm{e}^{-\mathrm{x}} \mathrm{f}(\mathrm{x})$ assumes its minimum in the interval $[0,1]$ at $\mathrm{x}=\frac{1}{4}$, which of the following is true ?
(A) $f^{\prime}(x)<f(x), \frac{1}{4}<x<\frac{3}{4}$
(B) $f^{\prime}(x)>f(x), 0<x<\frac{1}{4}$
(C) $f^{\prime}(x)<f(x), 0<x<\frac{1}{4}$
(D) $f^{\prime}(x)<f(x), \frac{3}{4}<x<1$

Sol. C

Let, $g(x)=e^{-x} f(x)$
As $\mathrm{g}^{\prime \prime}(\mathrm{x})>0$ so $\mathrm{g}^{\prime}(\mathrm{x})$ is increasing.
So, for $x<1 / 4, g^{\prime}(x)<g^{\prime}(1 / 4)=0$
$\Rightarrow\left(\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{f}(\mathrm{x})\right) \mathrm{e}^{-\mathrm{x}}<0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<\mathrm{f}(\mathrm{x})$ in $(0,1 / 4)$.

Paragraph for Questions 51 and 52

Let PQ be a focal chord of the parabola $y^{2}=4 a x$. The tangents to the parabola at P and Q meet at a point lying on the line $\mathrm{y}=2 \mathrm{x}+\mathrm{a}, \mathrm{a}>0$.
*51. Length of chord PQ is
(A) 7 a
(B) 5 a
(C) 2 a
(D) 3 a

Sol. (B)
Let $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right), \mathrm{Q}\left(\frac{\mathrm{a}}{\mathrm{t}^{2}},-\frac{2 \mathrm{a}}{\mathrm{t}}\right)$ as PQ is focal chord
Point of intersection of tangents at P and Q
$\left(-a, a\left(t-\frac{1}{t}\right)\right)$
as point of intersection lies on $y=2 x+a$
$\Rightarrow \mathrm{a}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)=-2 \mathrm{a}+\mathrm{a}$
$\mathrm{t}-\frac{1}{\mathrm{t}}=-1 \Rightarrow\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)^{2}=5$
length of focal chord $=a\left(t+\frac{1}{t}\right)^{2}=5 a$
*52. If chord PQ subtends an angle θ at the vertex of $y^{2}=4 \mathrm{ax}$, then $\tan \theta=$
(A) $\frac{2}{3} \sqrt{7}$
(B) $\frac{-2}{3} \sqrt{7}$
(C) $\frac{2}{3} \sqrt{5}$
(D) $\frac{-2}{3} \sqrt{5}$

Sol. (D)
Angle made by chord PQ at vertex $(0,0)$ is given by
$\tan \theta=\left(\frac{\frac{2}{t}+2 t}{1-4}\right)=\frac{2\left(\frac{1}{t}+t\right)}{-3}=\frac{-2}{3} \sqrt{5}$
Paragraph for Questions 53 and 54
Let $S=S_{1} \cap S_{2} \cap S_{3}$, where

$$
S_{1}=\{\mathrm{z} \in \mathrm{C}:|\mathrm{z}|<4\}, \mathrm{S}_{2}=\left\{z \in C: \operatorname{Im}\left[\frac{z-1+\sqrt{3} i}{1-\sqrt{3} i}\right]>0\right\} \text { and } \mathrm{S}_{3}=\{\mathrm{z} \in \mathrm{C}: \operatorname{Re} Z>0\}
$$

*53. Area of $\mathrm{S}=$
(A) $\frac{10 \pi}{3}$
(B) $\frac{20 \pi}{3}$
(C) $\frac{16 \pi}{3}$
(D) $\frac{32 \pi}{3}$

Sol. (B)
Area of region $S_{1} \cap S_{2} \cap S_{3}=$ shaded area $=\frac{\pi \times 4^{2}}{4}+\frac{4^{2} \times \pi}{6}$
$=4^{2} \pi\left\{\frac{1}{4}+\frac{1}{6}\right\}$
$=\frac{20 \pi}{3}$

*54. $\min _{z \in S}|1-3 i-z|=$
(A) $\frac{2-\sqrt{3}}{2}$
(B) $\frac{2+\sqrt{3}}{2}$
(C) $\frac{3-\sqrt{3}}{2}$
(D) $\frac{3+\sqrt{3}}{2}$

Sol. (C)
Distance of $(1,-3)$ from $y+\sqrt{3} x=0$
$>\left|\frac{-3+\sqrt{3} \times 1}{2}\right|$
$>\frac{3-\sqrt{3}}{2}$

Paragraph for Questions 55 and 56

A box B_{1} contains 1 white ball, 3 red balls and 2 black balls. Another box B_{2} contains 2 white balls, 3 red balls and 4 black balls. A third box B_{3} contains 3 white balls, 4 red balls and 5 black balls.
55. If 1 ball is drawn from each of the boxes B_{1}, B_{2} and B_{3}, the probability that all 3 drawn balls are of the same colour is
(A) $\frac{82}{648}$
(B) $\frac{90}{648}$
(C) $\frac{558}{648}$
(D) $\frac{566}{648}$

Sol. (A)
$P($ required $)=P($ all are white $)+P($ all are red $)+P($ all are black $)$
$=\frac{1}{6} \times \frac{2}{9} \times \frac{3}{12}+\frac{3}{6} \times \frac{3}{9} \times \frac{4}{12}+\frac{2}{6} \times \frac{4}{9} \times \frac{5}{12}$
$=\frac{6}{648}+\frac{36}{648}+\frac{40}{648}=\frac{82}{648}$.
56. If 2 balls are drawn (without replacement) from a randomly selected box and one of the balls is white and the other ball is red, the probability that these 2 balls are drawn from box B_{2} is
(A) $\frac{116}{181}$
(B) $\frac{126}{181}$
(C) $\frac{65}{181}$
(D) $\frac{55}{181}$

Sol. (D)
Let A : one ball is white and other is red
E_{1} : both balls are from box B_{1}
E_{2} : both balls are from box B_{2}
E_{3} : both balls are from box B_{3}
Here, $P($ required $)=P\left(\frac{E_{2}}{A}\right)$

$$
\begin{aligned}
& =\frac{P\left(\frac{A}{E_{2}}\right) \cdot P\left(E_{2}\right)}{P\left(\frac{A}{E_{1}}\right) \cdot P\left(E_{1}\right)+P\left(\frac{A}{E_{2}}\right) \cdot P\left(E_{2}\right)+P\left(\frac{A}{E_{3}}\right) \cdot P\left(E_{3}\right)} \\
& =\frac{\frac{{ }^{2} C_{1} \times{ }^{3} C_{1}}{{ }^{9} C_{2}} \times \frac{1}{3}}{\frac{{ }^{1} C_{1} \times{ }^{3} C_{1}}{{ }^{6} C_{2}} \times \frac{1}{3}+\frac{{ }^{2} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}}{{ }^{9} \mathrm{C}_{2}} \times \frac{1}{3}+\frac{{ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}}{{ }^{12} \mathrm{C}_{2}} \times \frac{1}{3}}=\frac{\frac{1}{6}}{\frac{1}{5}+\frac{1}{6}+\frac{2}{11}}=\frac{55}{181} .
\end{aligned}
$$

SECTION - 3 : (Matching list Type)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
*57. Match List I with List II and select the correct answer using the code given below the lists :

	List - I	List - II	
P.	$\left(\frac{1}{y^{2}}\left(\frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)}\right)+y^{4}\right)^{1 / 2}$ takes value	1.	$\frac{1}{2} \sqrt{\frac{5}{3}}$
Q.	If $\cos x+\cos y+\cos z=0=\sin x+\sin y+\sin z$ then possible value of $\cos \frac{x-y}{2}$ is	2.	$\sqrt{2}$
R.	If $\cos \left(\frac{\pi}{4}-x\right) \cos 2 \mathrm{x}+\sin \mathrm{x} \sin 2 \mathrm{x} \sec \mathrm{x}=\cos \mathrm{x} \sin 2 \mathrm{x} \sec \mathrm{x}$ $+\cos \left(\frac{\pi}{4}+x\right) \cos 2 \mathrm{x}$ then possible value of secx is	3.	$\frac{1}{2}$
S.	If $\cot \left(\sin ^{-1} \sqrt{1-x^{2}}\right)=\sin \left(\tan ^{-1}(x \sqrt{6})\right), \mathrm{x} \neq 0$, then possible value of x is	4.	1

Codes:

	P	Q	R	S
(A)	4	3	1	2
(B)	4	3	2	1
(C)	3	4	2	1
(D)	3	4	1	2

Sol. (B)

$$
\begin{align*}
& P \rightarrow \frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)} \\
& =\frac{\frac{1}{\sqrt{1+y^{2}}}+\frac{y^{2}}{\sqrt{1+y^{2}}}}{\frac{\sqrt{1-y^{2}}}{y}+\frac{y}{\sqrt{1-y^{2}}}=\frac{\sqrt{1+y^{2}}}{\frac{1}{y \sqrt{1-y^{2}}}}=y \sqrt{1-y^{4}}} \\
& \Rightarrow \frac{1}{y^{2}}\left(\frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)}\right)^{2}+y^{4} \\
& =\frac{1}{y^{2}}\left(y^{2}\left(1-y^{4}\right)\right)+y^{4}=1-y^{4}+y^{4}=1 \\
& Q \rightarrow \cos x+\cos y+\cos z=0 \\
& \quad \begin{array}{l}
\sin x+\sin y+\sin z=0 \\
\cos x+\cos y=-\cos z \\
\sin x+\sin y=-\sin z
\end{array}
\end{align*}
$$

$(1)^{2}+(2)^{2}$
$1+1+2(\cos \mathrm{x} \cos \mathrm{y}+\sin \mathrm{x} \sin \mathrm{y})=1$
$2+2 \cos (x-y)=1$
$2 \cos (x-y)=-1$
$\cos (\mathrm{x}-\mathrm{y})=-\frac{1}{2}$

$$
2 \cos ^{2}\left(\frac{x-y}{2}\right)-1=-\frac{1}{2}
$$

$$
2 \cos ^{2}\left(\frac{x-y}{2}\right)=\frac{1}{2}
$$

$$
\begin{aligned}
& \cos ^{2}\left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{1}{4} \\
& \cos \left(\frac{\mathrm{x}-\mathrm{y}}{2}\right)=\frac{1}{2} \\
& R \rightarrow \cos \left(\frac{\pi}{4}-x\right) \cos 2 x+\sin x \sin 2 x \sec x \\
& =\cos x \sin 2 x \sec x+\cos \left(\frac{\pi}{4}+x\right) \cos 2 x \\
& {\left[\cos \left(\frac{\pi}{4}-x\right)-\cos \left(\frac{\pi}{4}+x\right)\right] \cos 2 x=(\cos x \sin 2 x-\sin x \sin 2 x) \sec x} \\
& \frac{2}{\sqrt{2}} \sin x \cos 2 x=(\cos x-\sin x) \sin 2 x \sec x \\
& \sqrt{2} \sin \mathrm{x} \cos 2 \mathrm{x}=(\cos \mathrm{x}-\sin \mathrm{x}) 2 \sin \mathrm{x} \\
& \frac{1}{\sqrt{2}}=\frac{1}{\cos x+\sin x} \Rightarrow x=\frac{\pi}{4} \\
& \sec x=\sec \frac{\pi}{4}=\sqrt{2} \\
& S \rightarrow \cot \left(\sin ^{-1} \sqrt{1-x^{2}}\right) \\
& \cot \alpha=\frac{x}{\sqrt{1-x^{2}}} \\
& \tan ^{-1}(x \sqrt{6})=\phi \\
& \sin \phi=\frac{x \sqrt{6}}{\sqrt{6 x^{2}+1}} \\
& \Rightarrow \frac{x}{\sqrt{1-x^{2}}}=\frac{x \sqrt{6}}{\sqrt{6 x^{2}+1}} \\
& 6 x^{2}+1=6-6 x^{2} \\
& 12 \mathrm{x}^{2}=5 \\
& x=\sqrt{\frac{5}{12}}=\frac{1}{2} \sqrt{\frac{5}{3}}
\end{aligned}
$$

*58. A line $L: y=m x+3$ meets y-axis at $E(0,3)$ and the arc of the parabola $y^{2}=16 x, 0 \leq y \leq 6$ at the point $\mathrm{F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. The tangent to the parabola at $\mathrm{F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ intersects the y -axis at $\mathrm{G}\left(0, \mathrm{y}_{1}\right)$. The slope m of the line L is chosen such that the area of the triangle EFG has a local maximum.
Match List I with List II and select the correct answer using the code given below the lists :

List - I		List - II	
P.	$\mathrm{m}=$	1.	$\frac{1}{2}$
Q.	Maximum area of $\triangle \mathrm{EFG}$ is	2.	4
R.	$\mathrm{y}_{0}=$	3.	2
S.	$\mathrm{y}_{1}=$	4.	1

Codes :

	P	Q	R	S
(A)	4	1	2	3
(B)	3	4	1	2
(C)	1	3	2	4
(D)	1	3	4	2

Sol. (A)
$A(t)=2 t^{2}(3-4 t)$
For max. $A(t), t=\frac{1}{2}$
$\Rightarrow \mathrm{m}=1$
$\left.\Rightarrow A(t)\right|_{\max .}=\frac{1}{2}$ sq. units

$\mathrm{y}_{0}=4$ and $\mathrm{y}_{1}=2$
59. Match List I with List II and select the correct answer using the code given below the lists :

List - I	List - II		
P.	Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 2. Then the volume of the parallelepiped determined by vectors $2(\vec{a} \times \vec{b}), 3(\vec{b} \times \vec{c})$ and $(\vec{c} \times \vec{a})$ is	1.	100
Q.	Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 5. Then the volume of the parallelepiped determined by vectors $3(\vec{a}+\vec{b}),(\vec{b}+\vec{c})$ and $2(\vec{c}+\vec{a})$ is	2.	30
R.	Area of a triangle with adjacent sides determined by vectors \vec{a} and \vec{b} is 20. Then the area of the triangle with adjacent sides determined by vectors $(2 \vec{a}+3 \vec{b})$	3.	24
and $(\vec{a}-\vec{b})$ is	Area of a parallelogram with adjacent sides determined by vectors \vec{a} and \vec{b} is 30. Then the area of the parallelogram with adjacent sides determined by vectors $(\vec{a}+\vec{b})$ and \vec{a} is	4.	60

Codes:

	P	Q	R	S
(A)	4	2	3	1
(B)	2	3	1	4
(C)	3	4	1	2
(D)	1	4	3	2

Sol. (C)
$\mathrm{P} \rightarrow[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=2$
$\left[\begin{array}{lll}2 \vec{a} \times \vec{b} & 3 \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=6\left[\begin{array}{ll}\vec{a} \vec{b} & \vec{c}\end{array}\right]^{2}=6 \times 4=24$
$\mathrm{Q} \rightarrow[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=5$
$6[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=12[\vec{a} \vec{b} \vec{c}]=60$
$\mathrm{R} \rightarrow \frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=20$
$\frac{1}{2}|(2 \vec{a}+3 \vec{b}) \times(\vec{a}-\vec{b})|$

$$
\begin{aligned}
& \frac{1}{2}|-2(\vec{a} \times \vec{b})-3(\vec{a} \times \vec{b})| \\
& \frac{5}{2} \times 40=100 \\
S \rightarrow & |\vec{a} \times \vec{b}|=30 \\
& \Rightarrow|(\vec{a}+\vec{b}) \times \vec{a}|=|\vec{b} \times \vec{a}|=30
\end{aligned}
$$

60. Consider the lines $\mathrm{L}_{1}: \frac{x-1}{2}=\frac{y}{-1}=\frac{z+3}{1}, \mathrm{~L}_{2}: \frac{x-4}{1}=\frac{y+3}{1}=\frac{z+3}{2}$ and the planes $\mathrm{P}_{1}: 7 \mathrm{x}+\mathrm{y}+2 \mathrm{z}=3, \mathrm{P}_{2}$ $: 3 x+5 y-6 z=4$. Let $a x+b y+c z=d$ be the equation of the plane passing through the point of intersection of lines L_{1} and L_{2}, and perpendicular to planes P_{1} and P_{2}.
Match List I with List II and select the correct answer using the code given below the lists :

List - I		List - II	
P.	$\mathrm{a}=$	1.	13
Q.	$\mathrm{b}=$	2.	-3
R.	$\mathrm{c}=$	3.	1
S.	$\mathrm{d}=$	4.	-2

Codes:

	P	Q	R	S
(A)	3	2	4	1
(B)	1	3	4	2
(C)	3	2	1	4
(D)	2	4	1	3

Sol. (A)
Plane perpendicular to P_{1} and P_{2} has Direction Ratios of normal
$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 7 & 1 & 2 \\ 3 & 5 & -6\end{array}\right|=-16 \hat{i}+48 \hat{j}+32 \hat{k}$
For point of intersection of lines
$\left(2 \lambda_{1}+1,-\lambda_{1}, \lambda_{1}-3\right) \equiv\left(\lambda_{2}+4, \lambda_{2}-3,2 \lambda_{2}-3\right)$
$\Rightarrow 2 \lambda_{1}+1=\lambda_{2}+4$ or $2 \lambda_{1}-\lambda_{2}=3$
$-\lambda_{1}=\lambda_{2}-3$ or $\lambda_{1}+\lambda_{2}=3$
$\Rightarrow \lambda_{1}=2, \lambda_{2}=1$
\therefore Point is $(5,-2,-1)$
From (1) and (2), required plane is
$-1(x-5)+3(y+2)+2(z+1)=0$
or $-x+3 y+2 z=-13$
$x-3 y-2 z=13$
$\Rightarrow \mathrm{a}=1, \mathrm{~b}=-3, \mathrm{c}=-2, \mathrm{~d}=13$.

JEE ADVANCED - 2013
 Paper - 2

 CHEMISTRY

 CHEMISTRY}

SECTION -1 (One or more options correct Type)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.
*21. \quad The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is 1.1×10^{-12} at 298 K . The solubility (in $\mathrm{mol} / \mathrm{L}$) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution is
(A) 1.1×10^{-11}
(B) 1.1×10^{-10}
(C) 1.1×10^{-12}
(D) 1.1×10^{-9}

Sol. (B)
$\mathrm{K}_{\text {sp }}=1.1 \times 10^{-12}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{-2}\right]$
$1.1 \times 10^{-12}=[0.1]^{2}[\mathrm{~s}]$
$\mathrm{s}=1.1 \times 10^{-10}$
22. In the following reaction, the product(s) formed is(are)

P

Q

R

S
(A) P (major)
(C) R (minor)

Sol. (B, D)

$\mathrm{CHCl}_{3}+\overline{\mathrm{O}} \mathrm{H} \longrightarrow: \mathrm{CCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-}$
(B) Q (minor)
(D) S (major)

23. The major product(s) of the following reaction is (are)

P

Q

(B) Q
(A) P
(D) S

Sol. (B)

24. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is(are)

$(1.0 \mathrm{~mol})$

Reaction II :

(A) Reaction I: P and Reaction II : P
(B) Reaction I: U, acetone and Reaction II:Q, acetone
(C) Reaction I: T, U, acetone and Reaction II : P
(D) Reaction I : R, acetone and Reaction II : S, acetone

Sol. (C)
Solve as per law of limiting reagent.

25. The correct statement(s) about O_{3} is(are)
(A) $\mathrm{O}-\mathrm{O}$ bond lengths are equal.
(B) Thermal decomposition of O_{3} is endothermic.
(C) O_{3} is diamagnetic in nature.
(D) O_{3} has a bent structure

Sol. (A, C, D)

*26. In the nuclear transmutation
${ }_{4}^{9} \mathrm{Be}+\mathrm{X} \longrightarrow{ }_{4}^{8} \mathrm{Be}+\mathrm{Y}$
(X, Y) is (are)
(A) (γ, n)
(B) (p, D)
(C) (n, D)
(D) (γ, p)

Sol. (A, B)
${ }_{4}^{9} \mathrm{Be}+\gamma \longrightarrow{ }_{4}^{8} \mathrm{Be}+{ }_{0}^{1} \mathrm{n}$
${ }_{4}^{9} \mathrm{Be}+{ }_{1}^{1} \mathrm{P} \longrightarrow{ }_{4}^{8} \mathrm{Be}+{ }_{1}^{2} \mathrm{H}$
Hence (A) and (B) are correct
27. The carbon-based reduction method is NOT used for the extraction of
(A) tin from SnO_{2}
(B) iron from $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(C) aluminium from $\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) magnesium from $\mathrm{MgCO}_{3} \cdot \mathrm{CaCO}_{3}$

Sol. (C, D)
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ and SnO_{2} undergoes C reduction. Hence (C) and (D) are correct.
*28. The thermal dissociation equilibrium of $\mathrm{CaCO}_{3}(\mathrm{~s})$ is studied under different conditions.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
For this equilibrium, the correct statement(s) is(are)
(A) $\Delta \mathrm{H}$ is dependent on T
(B) K is independent of the initial amount of CaCO_{3}
(C) K is dependent on the pressure of CO_{2} at a given T
(D) $\Delta \mathrm{H}$ is independent of the catalyst, if any

Sol. (A, B, D)

For the equilibrium $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{S})+\mathrm{CO}_{2}(\mathrm{~g})$. The equilibrium constant (K) is independent of initial amount of CaCO_{3} where as at a given temperature is independent of pressure of $\mathrm{CO}_{2} . \Delta \mathrm{H}$ is independent of catalyst and it depends on temperature.
Hence (A), (B) and (D) are correct.

SECTION-2 (Paragraph Type)

This section contains 4 paragraphs each describing theory, experiment, data etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has only one correct answer among the four choices (A), (B), (C) and (D).

Paragraph for Question Nos. 29 and 30

An aqueous solution of a mixture of two inorganic salts, when treated with dilute HCl , gave a precipitate ($\mathbf{(P)}$ and a filtrate (\mathbf{Q}). The precipitate \mathbf{P} was found to dissolve in hot water. The filtrate (\mathbf{Q}) remained unchanged, when treated with $\mathrm{H}_{2} \mathrm{~S}$ in a dilute mineral acid medium. However, it gave a precipitate (R) with $\mathrm{H}_{2} \mathrm{~S}$ in an ammoniacal medium. The precipitate \mathbf{R} gave a coloured solution (S), when treated with $\mathrm{H}_{2} \mathrm{O}_{2}$ in an aqueous NaOH medium.
29. The precipitate \mathbf{P} contains
(A) Pb^{2+}
(B) Hg_{2}^{2+}
(C) Ag^{+}
(D) Hg^{2+}

Sol. (A)
30. The coloured solution \mathbf{S} contains
(A) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(B) CuSO_{4}
(C) ZnSO_{4}
(D) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$

Sol. (D)
Solution for the Q. No. 29 to 30.

$$
\mathrm{Pb}^{+2}+2 \mathrm{HCl} \longrightarrow \mathrm{PbCl}_{2} \xrightarrow[\text { Water }]{\text { Hot }} \text { soluble. }
$$

$\mathrm{Cr}^{+3} \xrightarrow[\text { ammoniacal }]{\mathrm{H}_{2} \mathrm{~S}} \mathrm{Cr}(\mathrm{OH})_{3} \downarrow$
$\mathrm{Cr}(\mathrm{OH})_{3} \xrightarrow[\mathrm{H}_{2} \mathrm{O}_{2}]{\mathrm{NaOH}} \underset{\text { Yellow solution }}{\mathrm{Na}_{2} \mathrm{CrO}_{4}}$

Paragraph for Question Nos. 31 to 32

\mathbf{P} and \mathbf{Q} are isomers of dicarboxylic acid $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$. Both decolorize $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$. On heating, \mathbf{P} forms the cyclic anhydride.
Upon treatment with dilute alkaline $\mathrm{KMnO}_{4}, \mathbf{P}$ as well as \mathbf{Q} could produce one or more than one from \mathbf{S}, \mathbf{T} and \mathbf{U}.

S

T

*31. Compounds formed from \mathbf{P} and \mathbf{Q} are, respectively
(A) Optically active \mathbf{S} and optically active pair (T, U)
(B) Optically inactive \mathbf{S} and optically inactive pair (T, U)
(C) Optically active pair (T, U) and optically active \mathbf{S}
(D) Optically inactive pair (T, U) and optically inactive \mathbf{S}

Sol. (B)

$\mathrm{S} \rightarrow$ optically inactive

*32. In the following reaction sequences \mathbf{V} and \mathbf{W} are, respectively
$\mathrm{Q} \xrightarrow[\Delta]{\mathrm{H}_{2} / \mathrm{Ni}} \mathrm{V}$

(A)

(B)

(C)

W
(D) $\mathrm{HOH}_{2} \mathrm{C}$

Sol. (A)

Paragraph for Question Nos. 33 to 34
A fixed mass ' m ' of a gas is subjected to transformation of states from K to L to M to N and back to K as shown in the figure

*33. The succeeding operations that enable this transformation of states are
(A) Heating, cooling, heating, cooling
(B) Cooling, heating, cooling, heating
(C) Heating, cooling, cooling, heating
(D) Cooling, heating, heating, cooling

Sol. (C)

*34. The pair of isochoric processes among the transformation of states is
(A) K to L and L to M
(B) L to M and N to K
(C) L to M and M to N
(D) M to N and N to K

Sol. (B)
Solution for the Q. No. 33 to 34.

K - L heating, isobaric
L - M cooling, isochoric
$\mathrm{M}-\mathrm{N}$ cooling, isobaric
N - K heating, isochoric

Paragraph for Question Nos. 35 to 36

The reactions of Cl_{2} gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two (different) oxoacids of chlorine, \mathbf{P} and \mathbf{Q}, respectively. The Cl_{2} gas reacts with SO_{2} gas, in presence of charcoal, to give a product \mathbf{R}. \mathbf{R} reacts with white phosphorus to give a compound \mathbf{S}. On hydrolysis, \mathbf{S} gives an oxoacid of phosphorus, T.
35. $\quad \mathbf{P}$ and \mathbf{Q}, respectively, are the sodium salts of
(A) hypochlorus and chloric acids
(B) hypochlorus and chlorus acids
(C) chloric and perchloric acids
(D) chloric and hypochlorus acids

Sol. (A)
36. \mathbf{R}, \mathbf{S} and \mathbf{T}, respectively, are
(A) $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{PCl}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
(B) $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{PCl}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$
(C) $\mathrm{SOCl}_{2}, \mathrm{PCl}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$
(D) $\mathrm{SOCl}_{2}, \mathrm{PCl}_{5}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$

Sol. (A)

Solution for the Q. No. 35 to 36

SECTION - 3: (Matching List Type)

This section contains $\mathbf{4}$ multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct.
37. The unbalanced chemical reactions given in List - I show missing reagent or condition (?) which are provided in List - II. Match List - I with List - II and select the correct answer using the code given below the lists:

> List - I

List - II
(P) $\quad \mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{?} \mathrm{PbSO}_{4}+\mathrm{O}_{2}+$ other product
(1) NO
(Q) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{?} \mathrm{NaHSO}_{4}+$ other product
(2) I_{2}
(R) $\mathrm{N}_{2} \mathrm{H}_{4} \xrightarrow{?} \mathrm{~N}_{2}+$ other product
(3) Warm
(S) $\mathrm{XeF}_{2} \xrightarrow{?} \mathrm{Xe}+$ other product
(4) Cl_{2}

Codes:

	P	Q	R	S
(A)	4	2	3	1
(B)	3	2	1	4
(C)	1	4	2	3
(D)	3	4	2	1

Sol. (D)
(P) $\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}$
(Q) $2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaCl}+2 \mathrm{NaHSO}_{4}+2 \mathrm{~S}$
(R) $\mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{I}_{2} \longrightarrow \mathrm{~N}_{2}+4 \mathrm{HI}$
(S) $\mathrm{XeF}_{2}+2 \mathrm{NO} \longrightarrow \mathrm{Xe}+2 \mathrm{NOF}$
*38. Match the chemical conversions in List - I with appropriate reagents in List - II and select the correct answer using the code given below the lists:
(P)

(Q)

List - II

(1) (i) $\mathrm{Hg}(\mathrm{OAc})_{2}$; (ii) NaBH_{4}
(2) NaOEt
(R)

(3) $\mathrm{Et}-\mathrm{Br}$
(S)

(4) (i) BH_{3}; (ii) $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$

Codes:

	P	Q	R	S
(A)	2	3	1	4
(B)	3	2	1	4
(C)	2	3	4	1
(D)	3	2	4	1

Sol. (A)
(P)

(Q)

(R)

(S)

39. An aqueous solution of X is added slowly to an aqueous solution of Y as shown in List $-I$. The variation in conductivity of these reactions in List - II. Match List - I with List - II and select the correct answer using the code given below the lists:

	List - I		List - II
(P)	$\underset{\mathrm{X}}{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}} \mathrm{~N}+\mathrm{CH}_{3} \mathrm{COOH}$	(1)	Conductivity decreases and then increases
(Q)	$\underset{\mathrm{X}}{\mathrm{KI}(0.1 \mathrm{M})}+\underset{\mathrm{Y}}{\mathrm{AgNO}_{3}} \mathrm{O}_{\mathrm{Y}}^{(0.01 \mathrm{M})}$	(2)	Conductivity decreases and then does not change much
(R)	$\underset{\mathrm{x}}{\mathrm{CH}_{3} \mathrm{COOH}}+\underset{\mathrm{Y}}{\mathrm{KOH}}$	(3)	Conductivity increases and then does not change much
(S)	$\underset{X}{\mathrm{NaOH}}+\underset{\mathrm{Y}}{\mathrm{HI}}$	(4)	Conductivity does not change much and then increases

Codes:

	P	Q	R	S
(A)	3	4	2	1
(B)	4	3	2	1
(C)	2	3	4	1
(D)	1	4	3	2

Sol. (A)

(P) $\underset{x}{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}} \mathrm{~N}+\underset{\mathrm{Y}}{\mathrm{CH}_{3} \mathrm{COOH}} \longrightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-}$

Initially conductivity increases due to ion formation after that it becomes practically constant because X alone can not form ions. Hence (3) is the correct match.
(Q) $\underset{\mathrm{X}}{\mathrm{KI}}\left(\underset{\mathrm{Y}}{0.1 \mathrm{M})}+\underset{\mathrm{Y}}{\mathrm{AgNO}_{3}}(0.01 \mathrm{M}) \longrightarrow \mathrm{AgI} \downarrow+\mathrm{KNO}_{3}\right.$

Number of ions in the solution remains constant until all the AgNO_{3} precipitated as AgI . Thereafter conductance increases due to increases in number of ions. Hence (4) is the correct match.
(R) Initially conductance decreases due to the decrease in the number of $\overline{\mathrm{O}} \mathrm{H}$ ions thereafter it slowly increases due to the increases in number of H^{+}ions. Hence (2) is the correct match.
(S) Initially it decreases due to decrease in H^{+}ions and then increases due to the increases in $\overline{\mathrm{O}} \mathrm{H}$ ions. Hence (1) is the correct match.
40. The standard reduction potential data at $25^{\circ} \mathrm{C}$ is given below:

$$
\begin{aligned}
& \mathrm{E}^{\circ}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right)=+0.77 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Fe}^{2+}, \mathrm{Fe}\right)=-0.44 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cu}^{2+}, \mathrm{Cu}\right)=+0.34 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cu}^{+}, \mathrm{Cu}\right)=+0.52 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left[\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\right]=+1.23 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left[\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}\right]=+0.40 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cr}^{3+}, \mathrm{Cr}\right)=-0.74 \mathrm{~V} \\
& \mathrm{E}^{\circ}\left(\mathrm{Cr}^{2+}, \mathrm{Cr}\right)=-0.91 \mathrm{~V}
\end{aligned}
$$

Match E^{0} of the redox pair in List - I with the values given in List - II and select the correct answer using the code given below the lists:
(P) $\quad \mathrm{E}^{\circ}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}\right)$
(Q) $\quad \mathrm{E}^{\circ}\left(4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{H}^{+}+4 \mathrm{OH}^{-}\right)$
(R) $\quad \mathrm{E}^{\circ}\left(\mathrm{Cu}^{2+}+\mathrm{Cu} \longrightarrow 2 \mathrm{Cu}^{+}\right)$
(S) $\quad \mathrm{E}^{\circ}\left(\mathrm{Cr}^{3+}, \mathrm{Cr}^{2+}\right)$
(1) -0.18 V
(2) -0.4 V
(3) $\quad-0.04 \mathrm{~V}$
(4) -0.83 V

Codes:

	P	Q	R	S
(A)	4	1	2	3
(B)	2	3	4	1
(C)	1	2	3	4
(D)	3	4	1	2

Sol. (D)
(P) $\Delta \mathrm{G}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{\mathrm{o}}=\Delta \mathrm{G}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\mathrm{o}}+\Delta \mathrm{G}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\mathrm{o}}$
$\Rightarrow-3 \times \mathrm{FE}_{\left(\mathrm{Fe}^{+3} / \mathrm{Fe}\right)}^{\mathrm{o}}=-1 \times \mathrm{FE}_{\left(\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}\right)}^{\mathrm{o}}+\left(-2 \times \mathrm{FE}_{\mathrm{Fe}^{+2} / \mathrm{Fe}}^{\mathrm{o}}\right)$
$\Rightarrow \mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}}^{\mathrm{o}}=-0.04 \mathrm{~V}$

$$
\begin{align*}
& \text { (Q) } \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{O}^{-} \mathrm{H} \quad \mathrm{E}^{\mathrm{o}}=0.40 \mathrm{~V} \tag{i}\\
& 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \quad \mathrm{E}^{0}=-1.23 \mathrm{~V} \tag{ii}\\
& \text { So } 4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{H}^{+}+4 \mathrm{OH} \\
& \mathrm{E}^{\mathrm{o}} \text { for } \mathrm{III}^{\text {rd }} \text { reduction }=0.40-1.23=-0.83 \mathrm{~V} \text {. } \\
& \text { (R) } \Delta \mathrm{G}_{\left(\mathrm{Cu}^{\left.u^{2} / \mathrm{Cu}\right)}\right.}^{\mathrm{o}}=\Delta \mathrm{G}_{\left(\mathrm{Cu}^{+2} / \mathrm{Cu}^{+}\right)}^{\mathrm{o}}+\Delta \mathrm{G}_{\left(\mathrm{Cu}^{+} / \mathrm{Cu}\right)}^{\mathrm{o}} \\
& -2 \times \mathrm{FE}_{\mathrm{Cu}^{+} / \mathrm{Cu}}^{0}=-1 \times \mathrm{FE}_{\mathrm{Cu}^{+2} / \mathrm{Cu}^{+}}^{0}+\left(-1 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cu}^{+} / \mathrm{Cu}}^{0}\right) \\
& \Rightarrow \mathrm{E}_{\mathrm{Cu}^{+2} / \mathrm{Cu}}^{0}=-0.18 \mathrm{~V} \text {. } \\
& \text { (S) } \Delta \mathrm{G}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{2}}^{\mathrm{o}}=\Delta \mathrm{G}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{\circ}}^{\mathrm{o}}+\Delta \mathrm{G}_{\mathrm{Cr}^{\prime} / \mathrm{rr}^{+2}}^{\mathrm{o}} \\
& -1 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{12}}^{0}=-3 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cr}^{+3} / \mathrm{Cr}^{0}}^{0}+\left(-2 \times \mathrm{F} \times \mathrm{E}_{\mathrm{Cr}^{2} / \mathrm{Cr}^{+2}}^{0}\right) \\
& \Rightarrow \mathrm{E}_{\mathrm{Cr}^{18} / \mathrm{cr}^{2}}^{\mathrm{o}}=-0.4 \mathrm{~V} \text {. }
\end{align*}
$$

