CHAPTER

1

NUMBER SYSTEM AND HCF & LCM

	respectively. If one of the numbers is 24, then the other		(SSC CGL 2 nd Sit. 2010)
	number is (SSC CGL 1 st Sit. 2010)		(a) 5 (b) 6 (c) 7 (d) 8
	(a) 48 (b) 36 (c) 24 (d) 16	13.	The remainder when 3 ²¹ is divided by 5 is
2.	The greatest number, which when subtracted from 5834,		(SSC CGL 1st Sit. 2011)
	gives a number exactly divisible by each of 20, 28, 32 and 35,		(a) 1 (b) 2 (c) 3 (d) 4
	is (SSC CGL 1 st Sit. 2010)	14.	The last digit of $(1001)^{2008} + 1002$ is
	(a) 1120 (b) 4714 (c) 5200 (d) 5600		(SSC CGL 1st Sit. 2011)
3.	The ninth term of the sequence 0, 3, 8, 15, 24, 35, is		(a) 0 (b) 3 (b) 4 (d) 6
500	(SSC CGL 1 st Sit. 2010)	15.	If $x * y = (x + 3)^2 (y-1)$, then the value of $5 * 4$ is
	(a) 63 (b) 70 (c) 80 (d) 99		(SSC CGL 1st Sit. 2011)
	(a) 65 (b) 75 (c) 65 (a) 55		
4.	A number, when divided by 114, leaves remainder 21. If the		(a) 192 (b) 182 (c) $\sqrt{2}$ (d) 356
	same number is divided by 19, then the remainder will be	16.	The L.C.M. of three different numbers is 120. Which of the
	(SSC CGL 1st Sit. 2010)		following cannot be their H.C.F.? (SSC CGL 1st Sit. 2011)
	(a) 1 (b) 2 (c) 7 (d) 17		(a) 8 (b) 12 (c) 24 (d) 35
5.	Two numbers are in the ratio 3: 4. Their L.C.M. is 84. The	17.	A number when divided by 49 leaves 32 as remainder. This
	greater number is (SSC CGL 1 st Sit. 2010)		number when divided by 7 will have the remainder as
	(a) 21 (b) 24 (c) 28 (d) 84		(SSC CGL 1st Sit. 2011)
5.	The sixth term of the sequence 2, 6, 11, 17, is		(a) 4 (b) 3 (c) 2 (d) 5
	(SSC CGL 1 st Sit. 2010)	18.	The traffic lights at three different road crossings change
	(a) 24 (b) 30 (c) 32 (d) 36		after 24 seconds, 36 seconds and 54 seconds respectively. If
7.	A number, when divided by 136, leaves remainder 36. If the		they all change simultaneously at 10: 15:00 AM, then at
٠.	same number is divided by 17, the remainder will be		what time will they again change simultaneously?
	same number is divided by 17, the remainder will be		Security Control of the Control of t
	(SSC CGL 2 nd Sit. 2010)		(SSC CGL 1st Sit. 2011)
	(a) 9 (b) 7 (c) 3 (d) 2		(a) 10:16:54AM (b) 10:18:36AM
8.	A 4-digit number is formed by repeating a 2-digit number		(c) 10:17:02 AM (d) 10:22:12 AM
••	such as 1515, 3737, etc. Any number of this form is exactly		The least number, which is to be added to the greatest
	divisible by (SSC CGL 2 nd Sit. 2010)		number of 4 digits so that the sum may be divisible by 345, is
	(a) 7 (b) 11 (c) 13 (d) 101		(SSC CGL 2 nd Sit. 2011)
9.	The H.C.F. and L.C.M. of two numbers are 12 and 336		(a) 50 (b) 6 (c) 60 (d) 5
,	respectively. If one of the numbers is 84, the other is	20.	If 17 ²⁰⁰ is divided by 18, the remainder is
	(SSC CGL 2 nd Sit. 2010)		(SSC CGL 2 nd Sit. 2011)
	(a) 36 (b) 48 (c) 72 (d) 96		(a) 1 (b) 2 (c) 16 (d) 17
10		21.	The unit digit in the sum of $(124)^{372} + (124)^{373}$ is
10.	The sum of two numbers is 36 and their H.C.F and L.C.M. are		(SSC CGL 2 nd Sit. 2011)
	3 and 105 respectively. The sum of the reciprocals of two numbers is (SSC CGL 2 nd Sit. 2010)		(a) 5 (b) 4 (c) 2 (d) 0
	numbers is (SSC CGL 2 nd Sit, 2010)	22.	If $a * b = a^b$, then the value of $5 * 3$ is
	2 3 4 2		(SSC CGL 2 nd Sit. 2011)
	(a) $\frac{2}{35}$ (b) $\frac{3}{25}$ (c) $\frac{4}{35}$ (d) $\frac{2}{25}$		(a) 125 (b) 243 (c) 53 (d) 15
11	If 'n' be any natural number, then by which largest number	23.	Which one of the following will completely divide $5^{71} + 5^{72}$
	$(n^3 - n)$ is always divisible? (SSC CGL 2 nd Sit. 2010)		+ 5 ⁷³ ? (SSC CGL 2 nd Sit. 2011)
	(a) 3 (b) 6 (c) 12 (d) 18		(a) 150 (b) 160 (c) 155 (d) 30
	(a) 5 (b) 6 (c) 12 (d) 18		

The H.C.F. and L.C.M. of two numebrs are 8 and 48 12. How many perfect squares lie between 120 and 300?

31. A three-digit number 4a3 is added to another three-digit number 984 to give the four digit number 13b7 which is

the following can be the sum of those two numbers?

25. When 'n' is divisible by 5 the remainder is 2. What is the

26. Four runners started running simultaneously from a point

27. The greatest number that can divide 140, 176, 264 leaving

28. There are 4 terms in an A.P. such that the sum of two means

29. The number nearest to 75070 which is divisible by 65, is

30. The least number which when divided by 35, 45, 55 leaves

is 110 and product of their extremes is 2125. The 3rd term is

on a circular track. They took 200 seconds, 300 seconds, 360

seconds and 450 seconds to complete one round. After how

much time they meet at the starting point for the first time?

(b) 80

remainder when n^2 is divided by 5?

(b) 3

remainders of 4, 6, and 9 respectively is

(b) 34

(b) 75

(b) 75075

the remainder 18, 28, 38 respectively is

(b) 3482

(a) 140

(a) 2

(a) 85

(a) 65

(a) 75070

(a) 3448

(a) 1800 seconds

(c) 2400 seconds

(c) 60

(c) 1

(c) 17

(c) 55

(c) 75010

(c) 2468

(SSC CGL 2nd Sit. 2011)

(d) 70

(SSC CGL 2nd Sit. 2011)

(d) 4

(SSC CGL 2nd Sit. 2011)

(SSC Sub. Ins. 2012)

(d) 2

(SSC Sub. Ins. 2012)

(d) 45

(SSC CGL 1st Sit. 2012)

(SSC CGL 1st Sit. 2012)

(d) 3265

(d) 75065

is:

(b) 3600 seconds

(d) 4800 seconds

32. The greatest number that will divide 19, 35 and 59 to leave the same remainder in each case is:

(SSC CGL 1st Sit. 2012)

(a) 9 (b) 6 (c) 7 (d) 8

33. The next term of the series

-1, 6, 25, 62, 123, 214,is: (SSC CGL 1st Sit. 2012)

(b) 143 (a) 345 (c) 341 (d) 343

34. The next term of the series 1, 5 12, 24, 43 is

(SSC CGL 1st Sit. 2012)

(a) 51 (b) 62 (c) 71 (d) 78

35. The least multiple of 13 which when divided by 4, 5, 6, 7 leaves remainder 3 in each case is

(SSC CGL 2nd Sit. 2012)

(a) 3780 (b) 3783 (c) 2520 (d) 2522

36. What would be the sum of

1+3+5+7+9+11+13+15+... up to 15th term?

(SSC CGL 2nd Sit. 2012)

(a) 250 240 (c) 225

(d) 265

remainder. The value of y is (SSC CGL 2nd Sit. 2013)

47. A number x when divided by 289 leaves 18 as the remainder.

The same number when divided by 17 leaves y as a

(c) 117

(b) 1

(c) 5 (d) 2

(d)

The sum of the squares of the digits of the largest prime (SSC Multi-Tasking 2014) number in two digits is (a) 148 (c) 97 (b) 130 (d) 118

(b) 39

49. Find the number lying between 900 and 1000 which when divided by 38 and 57 leaves in each case a remainder 23.

(SSC Multi-Tasking 2014)

(a) 912

(b) 926

(c) 935

(a) 13

(d) 962

Nur	mber System and HCF & LCM		3		
50.	The next term of the sequence,	62.	62. How many numbers are there from 300 to 650 which are		
	$\left(1+\frac{1}{2}\right), \left(1+\frac{1}{2}\right)\left(1+\frac{1}{2}\right), \left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right), $ is		completely divisible by both 5 and 7? (SSC CGL 2017) (a) 8 (b) 9 (c) 10 (d) 12		
	(SSC Sub. Ins. 2014)	63.	Which value among $\sqrt[3]{5}$, $\sqrt[4]{6}$, $\sqrt[6]{12}$, $\sqrt[12]{276}$ is the largest?		
			(SSC CGL 2017)		
	(a) 3 (b) $\left(1 + \frac{1}{5}\right)$		(a) $\sqrt[3]{5}$ (b) $\sqrt[4]{6}$ (c) $\sqrt[6]{12}$ (d) $\sqrt[12]{276}$		
	(c) 5 (d) $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{5}\right)$	64.	By which least number should 5000 be divided so that it becomes a perfect square? (SSC CGL 2017)		
5 1	(2/ (3/		(a) 2 (b) 5 (c) 10 (d) 25		
31.	Three tankers contain 403 litres, 434 litres, 465 litres of diesel respectively. Then the maximum capacity of a container that	65.	What is the LCM (least common multiple) of 57 and 93? (SSC CHSL 2017)		
	can measure the diesel of the three container exact number of times is (SSC Sub. Ins. 2014)		(a) 1767 (b) 1567 (c) 1576 (d) 1919		
	(a) 31 litres (b) 62 litres (c) 41 litres (d) 84 litres	66.	Product of digits of a 2-digit number is 27. If we add 54 to the number, the new number obtained is a number formed by		
52.	- BLEF - BLEF BLEF - BLEF BLEF BLEF BLEF BLEF BLEF BLEF BLEF		interchange of the digits. Find the number.		
	respectively. If the first number is divided by 2, the quotient		(SSC CHSL 2017)		
	is 44. The other number is (SSC CHSL 2014)		(a) 39 (b) 93 (c) 63 (d) 36		
53.	(a) 147 (b) 528 (c) 132 (d) 264 A teacher wants to arrange his students in an equal number	67.	The least number of five digits exactly divisible by 88 is: (SSC MTS 2017)		
	Substance and a substance of the substan		(550 1115 2017)		
	of rows and columns. If there are 1369 students, the number of students in the last row are (SSC CHSL 2014)		(a) 10088 (b) 10023 (c) 10132 (d) 10032		
	(a) 37 (b) 33 (c) 63 (d) 47	68.	Of the three numbers, the first is twice the second, and the		
54.	The first term of an Arithmetic Progression is 22 and the last		second is twice the third. The average of the reciprocal of the numbers is 7/12. The numbers are: (SSC MTS 2017)		
	term is -11. If the sum is 66, the number of terms in the		(a) 20, 10, 5 (b) 4, 2, 1		
	sequence are : (SSC CHSL 2014) (a) 10 (b) 12 (c) 9 (d) 8		(c) 36, 18, 9 (d) 16, 8, 4		
55	(a) 10 (b) 12 (c) 9 (d) 8 If the product of first fifty positive consecutive integers be	69.	What is the smallest value that must be added to 709, so that the resultant is a perfect square? (SSC Sub. Ins. 2017)		
33.	divisible by 7 ⁿ , where n is an integer, then the largest possible		(a) 8 (b) 12 (c) 20 (d) 32		
	value of n is (SSC CGL 1 st Sit. 2014)	70	Which one among $\sqrt{10} + \sqrt{4}, \sqrt{11} + \sqrt{3}, \sqrt{7} + \sqrt{7}$ is the		
Markey	(a) 7 (b) 8 (c) 10 (d) 5	70.	smallest number? (SSC Sub. Ins. 2017)		
56.	The smallest five digit number which is divisible by 12, 18 and 21 is: (SSC CHSL 2015)		(a) $\sqrt{10} + \sqrt{4}$ (b) $\sqrt{11} + \sqrt{3}$		
	(a) 50321 (b) 10224 (c) 30256 (d) 10080				
57.	If $1^3 + 2^3 + \dots + 10^3 - 3025$, then the value of $2^3 + 4^3 + \dots + 10^3 - 3025$	71	(c) $\sqrt{7} + \sqrt{7}$ (d) All are equal If 34N is divisible by 11, then what is the value of N?		
	20 ³ is: (SSC CHSL 2015)	, 1.	(SSC Sub. Ins. 2017)		
	(a) 5060 (b) 12100 (c) 24200 (d) 7590		(a) 1 (b) 3 (c) 4 (d) 9		
58.	(c) 24200 (d) 7590 The least number that should be added to 2055 so that the	72.	What is the sum of the digits of the least number, which		
	sum is exactly divisible by 27: (SSC CGL 1st Sit. 2015)		when divided by 12,16 and 54, leaves the same remainder 7 in each case, and is also completely divisible by 13?		
	(a) 24 (b) 27 (c) 31 (d) 28		(SSC Sub. Ins. 2018)		
59.	The least number which when divided by 6, 9, 12, 15, 18		(a) 36 (b) 16 (c) 9 (d) 27		
	leaves the same remainder 2 in each case is: (SSC CGL 2 nd Sit. 2015)		If the seven digit number $74x29y6$ is divisible by 72, then		
	(a) 178 (b) 182 (c) 176 (d) 180		what will be the value of $(2x + 3y)$? (SSC Sub. Ins. 2018)		
60.	What least value must be assigned to '*' so that the numbers		(a) 21 (b) 20 (c) 19 (d) 16		
	451*603 is exactly divisible by 9?	/4.	Two numbers are in the ratio 4:7. If their HCF is 26, then the sum of these two numbers will be: (SSC Sub. Ins. 2018)		
	(SSC CGL 1 st Sit. 2016) (a) 7 (b) 8 (c) 5 (d) 9		(a) 364 (b) 286 (c) 338 (d) 312		
	(a) 7 (b) 8 (c) 5 (d) 9	00000			

61. If X and Y are the two digits of the number 347XY such that

(b) 4

value of X + Y?

(a) 2

the number is completely divisible by 80, then what is the

(c) 6

(SSC CGL 2017)

(d) 8

75. The square root of which of the following is a rational number?

(b) 1489.96

(d) 2460.14

(a) 5823.82

(c) 22504.9

(SSC Sub. Ins. 2018)

- 77. Which among the following numbers is exactly divisible by 11.13 and 7? (SSC CHSL-2018) (a) 259237 (b) 259248 (c) 259270 (d) 259259
- 78. If the six digit number $15x^1y^2$ is divisible by 44, then (x+y)is equal to: (SSC CGL-2018)
 - (a) 8
- (b) 7
- (c) 6
- (d) 9
- 79. What is the value of x so that the seven digit number 8439x53is divisible by 99? (SSC CGL-2018)
 - (a) 9
- (b) 4
- (c) 3
- (d) 6
- 80. What is the median of the given data? (SSC MTS 2018) 41, 43, 46, 50, 85, 61, 76, 55, 58, 95
- (b) 58
- (c) 57
- 81. If A is the smallest three digit number divisible by both 6 and 7 and B is the largest four digit number divisible by both 6 and 7, then what is the value of B - A? (SSC MTS 2018) (a) 9912 (b) 9870 (d) 9954 (c) 9996
- 82. If the number 1005x4 is completely divisible by 8, then the smallest integer in place of x will be: (SSC CGL 2019-20) (d) 2 (a) 1 (b) 0 (c) 4
- 83. What is the HCF of $2^3 \times 3^4$ and $2^5 \times 3^2$?

(SSC MTS 2019-20)

- (a) $2^5 \times 3^3$ (b) $2^3 \times 3^4$ (c) $2^3 \times 3^2$ (d) $2^5 \times 3^4$
- 84. Table given below shows the number of students having

obtained	different marks.	Marks Number of students		
Marks	Number of students			
9 - 11	6	11 - 13	5	
13 - 15	2	15 - 17	2	
17 - 19	5			

- What is the mean marks per student?
- (a) 13.5
- (b) 12.25 (c) 15.5
- **85.** When $(77^{77} + 77)$ is divided by 78, the remainder is:
 - (SSC CHSL 2019-20)
 - (b) 77 (c) 75 (d) 76
- **86.** Find the greatest value of b so that 30a68b (a > b) is divisible by 11. (SSC CGL 2020-21)
 - (a) 4
- (b) 6
- (c) 3
- (d) 9
- 87. If the nine-digit number '8475639AB' is divisible by 99, then what is the value of A and B? (SSC CHSL 2020-21)
 - (a) A = 4, B = 8
- (b) A = 3, B = 9
- (c) A = 5, B = 3
- (d) A = 4, B = 6
- 88. Which is the largest number that will divide 2036 and 233 leaving remainders 12 and 13, respectively?

(SSC MTS 2020-21)

- (a) 36
- (b)
- (c) 44
- (d) 46
- 89. In a week, the weights of a bag of tea were 350 kg, 340 kg, 270 kg, 360 kg, 310 kg, 300 kg. The range (in kg) is:

(SSC MTS 2020-21)

- (b) 70
- (c) 90
- (d) 100®
- 90. If a nine-digit number 785x3678y is divisible by 72, then the value of (x - y) is: (SSC Sub-Inspector 2020-21)
 - (a) -2(b) 0
- (c) 2
- 91. Two numbers are in the ratio 7: 11. If their HCF is 28, then the difference between the two numbers is:

(SSC Sub-Inspector 2020-21)

- (a) 28
- (b) 308
- (c) 112
- (d) 196
- 92. What is the least number which when divided by 15, 18 and 36 leaves the same remainder 9 in each case and is divisible by 11? (SSC Sub-Inspector 2020-21)
 - (a) 1269
- (b) 1071
- (c) 1089
- (d) 1080
- **93.** If $14331433 \times 1422 \times 1425$ is divided by 12, then what is the (SSC Sub-Inspector 2020-21) remainder?
 - (a) 3
- (b) 6
- (c) 9
- (d) 8

HINTS & EXPLANATIONS

1. (d)
$$p \times q = HCF \times LCM$$

$$\therefore$$
 Second number = $\frac{8 \times 48}{24} = 16$

$$\therefore$$
 LCM = $2 \times 2 \times 5 \times 7 \times 8 = 1120$

- 3. (c) 0+3=3
 - 3 + 5 = 8
 - 8 + 7 = 15
 - 15 + 9 = 24

 - 24 + 11 = 35
 - 35 + 13 = 4848 + 15 = 63
 - 63 + 17 = 80

- (b) If the first divisor is a multiple of second divisor.
 Then, remainder by the second divisor.
 - \therefore Remainder = $21 \div 19 = 2$
- 5. (c) Let the numbers be 3x and 4x.
 - \therefore Their LCM = 12x
 - 12x = 84

$$\Rightarrow x = \frac{84}{12} = 7$$

 \therefore Larger number $=4x=4\times7=28$

- 6. (c) 2+4=6 6+5=11 11+6=17 17+7=24 $24+8=\boxed{32}$
- 7. (d) If the first divisor be a multiple of the second divisor, then required remainder = remainder obtained by dividing the first remainder (36) by the second divisor (17) = 2
 - : 17 is a factor of 136
 - :. Remainder when 36 is divided by 17 = 2
- 8. (d) $xyxy = xy \times 100 + xy$ = $xy(100 + 1) = 101 \times xy$ Hence, the number is exactly divisible by 101.
- 9. **(b)** First number × second number = HCF × LCM ⇒ 84 × second number = 12 × 336
 - .: Second number

$$=\frac{12\times336}{84}=48$$

 $p \times q = HCF \times LCM$

$$q = \frac{12 \times 336}{84} = 48$$

10. (c) Let the numbers be 3x and 3y.

$$\therefore 3x + 3y = 36$$
$$\Rightarrow x + y = 12$$

and 3xy = 105

Dividing equation (i) by (ii), we have

$$\frac{x}{3xy} + \frac{y}{3xy} = \frac{12}{105}$$

$$\Rightarrow \frac{1}{3y} + \frac{1}{3x} = \frac{4}{35}$$

Shortcut Method:

$$\frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy}$$

11. **(b)** $n^3 - n = (n^2 - 1)$ $\Rightarrow n (n+1) (n-1)$ For n = 2, $n^3 - n = 6$ $2^3 - 2 = 6$ i.e. $n^3 - n$ is always divisible by 6. 12. (c) $11^2 = 121, 12^2 = 144, 13^2 = 169, 14^2 = 196$ $15^2 = 225, 16^2 = 256, 17^2 = 289$ Square no above 120 = 121 of 11Square no below 300 = 289 of 17Total 11, 12, 13, 14, 15, 16, 17, i.e. 7 no.

Alternate Method:

First square number above 120 is 121

112>120 and 182>300

Hence, required number of squares between 120 to 300

$$=18-11=7$$

13. (c) $3^1 = 3$; $3^2 = 9$; $3^3 = 27$; $3^5 = 81$; $3^5 = 243$ i.e. unit's digit is repeated after index 4. Remainder after dividing 21 by 4 = 1 \therefore Unit's digit in the expansion of $(3)^{21} = 3$ \therefore Remainder after dividing by 5 = 3

- **14. (b)** Last digit of $(1001)^{2008} + 1002 = 1 + 2 = 3$
- 15. (c) $x \star y = (x+3)^2 (y-1)$ $\therefore 5 \star 4 = (5+3)^2 (4-1)$ $= 64 \times 3 = 192$
- 16. (d) HCF must be a factor of LCM from option 35 is not

factor of 120.

OR

Alternate Method:

If two number are in the form of ax and bx then x is H.C.F and a × b × x is their L.C.M Hence L.C.M is always divisible by H.C.F.

- 17. (a) Here, the first divisor i.e. 49 is multiple of second divisor i.e. 7.
 ∴ Required remainder = Remainder obtained on dividing 32 by 7 = 4
- **18. (b)** LCM of 24, 36 and 54 seconds = 216 seconds = 3 minutes 36 seconds ∴ Required time = 10:15:00+ 3 minutes 36 seconds = 10:18:36 a.m.
- **19. (b)** The largest 4-digit number = 9999 345)9999(28

690

...(i)

...(ii)

3099

2760

339

- \therefore Required number = 345 339 = 6
- **20.** (a) Remainder when $(x-1)^n$ is divided by x is $(-1)^n$
 - $(17)^{200} = (18-1)^{200}$
 - :. Remainder = $(-1)^{200} = 1$

Alternate Method:

 $a^n - b^n$ is completely divisible by a + b. If n is an even number in the case of $17^{200} \div 18$ $17^{200} - 1^{200}$ is completely divisible by 17 + 1 = 18

 $17^{200} - 1^{200}$ is completely divisible by 17 + 1 = 18Here, 1 is remainder.

Or in other words if a^n is divided by a + 1 and n is even number then it always left 1 as remainder.

21. (d)
$$4^1 = 4$$
; $4^2 = 16$; $4^3 = 64$; $4^4 = 256$; $4^5 = 1024$
Remainder on dividing 372 by $4 = 0$

Remainder on dividing 373 by 4 = 1

:. Required unit digit

= Unit's digit of the sum = 6 + 4 = 0

22. (a)
$$a * b = a^b$$

 $\therefore 5 * 3 = 5^3 = 5 \times 5 \times 5 = 125$

23. (c)
$$5^{71} + 5^{72} + 5^{73}$$

= $5^{71} (1 + 5 + 5^2) = 5^{70} \times 5 \times 31$
= $5^{71} \times 155$ which is exactly divisible by 155.

24. (d) Let the numbers be 10x and 10y where x and y are prime to each other.

$$\Rightarrow 10xy = 120$$
 $\Rightarrow xy = 12$

Posssible pairs = (3, 4) or (1, 12)

 \therefore Sum of the numbers = 30 + 40 = 70

Alternate Method:

If two different numbers are in form of ax and bx H.C.F of these numbers is x and L.C.M of these numbers is abx

Now a and b are co-prime terms in L.C.M.

$$10 \times a \times b = 120$$

$$a \times b = 12 \rightarrow 1 \times 12$$

 2×6 this is not a pair of co prime terms.

25. (d) Required remainder = Remainder obtained by dividing 2^2 by 5.

Remainder = 4

- **26.** (a) Required time = LCM of 200, 300, 360 and 450 seconds = 1800 seconds.
- 27. (c) Required number = H.C.F of (140 4), (176 6) and (264 9) = H.C.F. of 136, 170 and 255.

:. Required number = 17

Alternate Method:

Here divisible terms are 140-4=136, 176-6=170 and 264-9=255

Now, difference between these numbers

$$170 - 136 = 34$$

$$225 - 170 = 85$$

H.C.F of difference = 17

Hence required number = 17.

28. (a) Let the 4 terms in A.P are a – 3d, a – d, a + d, a + 3d According to question

$$a-d+a+d=110$$
 ...(1)

$$(a-3d)(a+3d)=2125$$
 ... (2)

From equation (1)

$$a - d + a + d = 110$$

$$2a = 110 \Rightarrow a = 55$$

From equation (2)

$$(a-3d)(a+3d)=2125$$

$$\Rightarrow$$
 a² - 9d² = 2125

$$\Rightarrow$$
 (55)² - 9d² = 2125

$$\Rightarrow 3025 - 9d^2 = 2125$$

$$\Rightarrow$$
 900 = 9d² \Rightarrow d² = 100 \Rightarrow d = 10

$$a = 55, d = +10$$

series would be:

25, 45, 65, 85

IIIrd term would be 65.

29. (b) 65)75070(1154

$$\begin{array}{r}
 \underline{65} \\
 \underline{100} \\
 \underline{65} \\
 \underline{357} \\
 \underline{325} \\
 \underline{320} \\
 \underline{260}
\end{array}$$

60

:. Required number

$$=75070+(65-60)=75075$$

30. (a) 35-18=17

$$45 - 28 = 17$$

$$55 - 38 = 17$$

i.e., difference between the divisor and correseponding remainder is same.

LCM of 35, 45 and 55 = 3465

:. Required number

$$=3465-17=3448$$

 \therefore 13b7 is exactly divisible by 11.

$$\therefore b=9 \therefore a=1$$

$$\therefore a+b=9+1=10$$
32. (d) Required number = HCF of

(35-19), (59-35) and (59-19) = HCF 16, 24 and 40=8

33. (c) The pattern is:

$$1^3 - 2 = -1$$

$$2^3 - 2 = 6$$

$$3^3 - 2 = 25$$

$$4^3 - 2 = 62$$

$$5^3 - 2 = 123$$

$$6^3 - 2 = 214$$

$$7^3 - 2 = 341$$

34. (c) The pattern is:
$$1+4=5$$

$$5+7(=4+3)=12$$

$$12+12 (=7+5)=24$$

$$24+19 (= 12+7)=43$$

$$43 + 28 (= 19 + 9) = \boxed{71}$$

35. (b) LCM of 4, 5, 6 and
$$7 = 420$$

$$=420k+3$$
 which is exactly divisible by 13.

$$=32 \times 13k + 4k + 3$$

Hence, 4k + 3 should be divisible by 13 for some value of k

For k = 9, 4k + 3 = 39 which is divisible by 13.

$$\therefore$$
 Required number = $420 \times 9 + 3 = 3783$

First term (a)
$$= 1$$

Common difference (d) = 2

Sum of 15 term =
$$\frac{n}{2}(2a + (n-1)d)$$

Sum =
$$\frac{15}{2}$$
(2×1+(15-1)2)

$$=\frac{15}{2}\times30=225$$

37. (a) Here,
$$(48-38) = 10$$
, $(64-54) = 10$, $(90-80) = 10$ and $(120-110) = 10$.

.: Required number = (L.C.M of 48, 64, 90 and 120) – 10 = 2870

38. (c)
$$(0.11)^3 (1^3 + 2^3 + \dots + 9^3)$$

= 0.001331 × 2025

$$=\frac{1331}{40000}\approx 2.695$$

39. (a) Let the number be 10x + y.

According to condition

$$10x + y + 18 = 10y + x$$

$$v-x=2$$

So those numbers are 02, 13, 24, 35, 46, 57, 68, 79, 80 But 13 and 79 are prime numbers.

40. (d)
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{\left(\sqrt{3} - \sqrt{2}\right)\left(\sqrt{3} - \sqrt{2}\right)}{\left(\sqrt{3} + \sqrt{2}\right)\left(\sqrt{3} - \sqrt{2}\right)}$$

$$=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}=3+2-2\sqrt{3}. \sqrt{2}=5-2\sqrt{6}$$

$$\therefore y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} = 5 + 2\sqrt{6}$$

$$x + y = 5 - 2\sqrt{6} + 5 + 2\sqrt{6} = 10$$

$$xy = \left(5 - 2\sqrt{6}\right) \cdot \left(5 + 2\sqrt{6}\right)$$

$$=25-24=1$$

$$\therefore x^3 + y^3 = (x+y)^3 - 3xy(x+y)$$
$$= (10)^3 - 3(10) = 1000 - 30 = 970$$

41. (b) If the numbers be 3x and 4x, then

$$HCF = x = 5$$

∴ Number = 15 and 20

:. LCM =
$$12x = 12 \times 5 = 60$$

Alternate Method:

If two numbers are in the form of 3x and 4x then their L.C.M = $3 \times 4 \times x$

$$=3\times4\times5=60$$

42. (c) LCM of
$$\frac{2}{3}$$
, $\frac{4}{9}$, $\frac{5}{6}$

$$\frac{LCM \ of(2,4,5)}{HCF \ of(3,9,6)} = \frac{20}{3}$$

44. (d)
$$(100x+10y+z)-(x+y+z)=99x+9y$$

= $9(11x+y)$

45. (d)
$$t_{n+2} = t_n + t_{n+1}$$

 $t_2 = t_2 + t_2 = 3$
 $t_4 = t_3 + t_2 = 3 + 2 = 5$
 $t_6 = t_4 + t_3 = 3 + 5 = 8$

 $t_5 = t_4 + t_3 = 3 + 5 = 8$ **46.** (c) HCF of two-prime numbers = 1

:. Product of numbers = their LCM = 117

47. (b) Here, the first divisor (289) is a multiple of second divisor (17).

∴ Required remainder = Remainder obtained on dividing 18 by 17 = 1

48. (b) Largest two digit prime number is 97 $9^2 + 7^2 = 81 + 49 = 130$

49. (c) L.C.M of (38, 57) = 114

Multiple of 114 between 900 and 1000 = 912number which leaves 23 = 912 + 23 = 935

50. (a) Next term will be

$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{5}\right)$$

$$=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}=3$$

51. (a) H.C.F. of 403, 434 and 465 is 31.

52. (c) First number = $2 \times 44 = 88$

Other number =
$$\frac{44 \times 264}{88}$$
 = 132

53. (a) If they are equal number of rows and columns then, $\sqrt{1369} = 37$

54. (b) The sum of Arithmetic Progression is given by

$$s = \frac{n}{2}(a+l)$$

$$66 = \frac{n}{2}(22 - 11) = \frac{n}{2} \times 11$$

$$n = 12$$

55. (b) Product of first fifty positive consecutive integers = 1×10^{-1} $2 \times \times 50 = 50!$

Largest possible value of n

$$= \left\lceil \frac{50}{7} \right\rceil + \left\lceil \frac{50}{7^2} \right\rceil = 7 + 1 = 8$$

56. (d) Lowest 5 digit number = 10,000

The number which is divisible by 12, 18 and 21 is LCM of 12, 18, 12 which is 252.

$$\frac{10000}{252}$$
 gives 172 as remainder

So,
$$252 - 172 = 80$$

10,000 + 80 = 10080

If 10080 when divided by 12, 18 and 21 gives 0 as

So, 10080 is the least 5-digit number.

57. (c)
$$2^3 + 4^3 + 6^3 + \dots + 20^3$$

= $2^3 (1^3 + 2^3 + 3^3 + \dots + 10^3)$
= $2^3 \times \left(\frac{(n)(n+1)}{2}\right)^2 8 \times \left(\frac{10 \times 11}{2}\right)^2 = 8 \times 3025$

58. (a) Number has to be less than 27. Let the number be x. On Dividing 2055 by 27, we get remainder as 3 Now, 3 + x = 27 $\therefore x = 24$

59. (b) LCM of 6, 9, 12, 15 and 18

LCM =
$$2 \times 3 \times 3 \times 2 \times 5 = 180$$

Least number = $180 + 2 = 182$

60. (b) To divide 451 * 603 by 9 (4+5+1+*+6+0+3)=(19+*)(19+*) must be multiple of 9 19 + * = 27

*=8

61. (a) 347XY as 347X0. Since 8 is a factor of 80. 347X0 is divisible by 8. It means last three digits 7X0 is divisible by 8.

Hence, X is 2 or 6

if X = 6, number is 34760. But this is not divisible

if X = 2, number is 34720, which is divisible by 80. Therefore, number is 34720 with X = 2 and Y = 0. x + y = 2 + 0 = 2.

62. (c) LCM of 5 and 7 = 35

So, the numbers divisible by both 5 and 7 are multilpe of 35. Between 300 and 650. We have 10 multiple of 35. They are: 315, 350, 385, 420, 455, 490, 525, 560, 595, 630.

63. (a)
$$\sqrt[3]{5} = 5^{\frac{1}{3} \times 12} = 5^4 = 625$$

$$\sqrt[4]{6} = 6^{\frac{1}{4} \times 12} = 6^3 = 216$$

$$\sqrt[6]{12} = 12^{\frac{1}{6} \times 12} = 12^2 = 144$$

$$\sqrt[12]{276} = 276^{\frac{1}{12} \times 12} = 276^{1} = 276$$

So, option (a) is correct.

64. (a) According to option,

 $5000 \div 2 = 2500$

Hence, 2500 is a perfect square of 50.

65. (a) LCM of 57 and 93,

$$\Rightarrow$$
 3 × 19 × 31 = 1767.

So, Required answer is 1767.

66. (a) Let digit at ten's place be x and digit at unit's place be y.

$$\therefore \quad \text{The number} = 10x + y$$

When digit are interchanged, the new number

= 10y + x

According to question,

Product of digits =
$$27$$
 i.e., $xy = 27$...(i)

Also.

$$10x+y+54=10y+x$$

$$9x - 9y = -54$$

$$x-y=-6$$

From (i) and (ii),

$$y(y-6) = 27$$

$$y^2 - 6y - 27 = 0$$

$$y^2 - 9y + 3y - 27 = 0$$

$$(y-9)(y+3)=0$$

$$\therefore$$
 y = 9 or y = -3

When
$$x = 3$$
, and $y = 9$

Required number = 10x + y

$$=10 \times 3 + 9$$

$$\Rightarrow$$
 30+9=39.

67. (d) The smallest number of 5 digits = 10000

Now,
$$\frac{10000}{88}$$
 = 113, and remainder is 56

$$\therefore$$
 Required number = $10000 + (88 - 56) = (10000 + 32)$
= 10032 .

68. (c) Let third number = x

then.

second number = 2x

first number = 4 x

According to question

$$\frac{\left(\frac{1}{x} + \frac{1}{2x} + \frac{1}{4x}\right)}{3} = \frac{7}{12}$$

first number = $4x = 4 \times 9 = 36$

second number = $2x = 2 \times 9 = 18$

third number = x = 9

69. (c) According to question

$$26 < \sqrt{709} < 27$$

Now, $(27)^2 = 729$

729 - 709 = 20

20 must be added to 709 to make it a perfect square.

70. (b) Here.

$$\sqrt{10} + \sqrt{4} = 3.16 + 2 = 5.16$$

 $\sqrt{11} + \sqrt{3} = 3.31 + 1.73 = 5.04$
 $\sqrt{7} + \sqrt{7} = 2.64 + 2.64 = 5.28$

So, $\sqrt{11} + \sqrt{3}$ is the smallest number.

71. (a) A number is divisible by 11, if difference of the sum of the digits at the even places and sum of digits at odd places is either 0 (zero) or a multiple of 11.

Now,

$$(3+N)-4=0$$

$$3 + N - 4 = 0$$

$$N - 1 = 0$$

72. (b) L.C.M. of 12, 16 and 54.

$$12 = 2 \times 2 \times 3$$
.

$$16=2\times2\times2\times2$$
.

$$54 = 2 \times 3 \times 3 \times 3$$

L.C.M. =
$$2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 432$$

Remainder = 7.

So, required number = 432 + 7 = 439.

But this is not divisible by 13.

so, next number is $432 \times 2 + 7 = 871$.

Number 871 is divisible by 13.

Hence, required number is 871.

Sum of its digits = 8 + 7 + 1 = 16.

73. (c) Any number that is divisible by 72 must be divisible by 3, 4, 8, and 9.

> Now, a number is divisible by 4 when a number formed by its last two digits of that number is divisible by 4. 'y6' is divisible by 4, for

$$y = 1, 3, 5, 7, 9$$

Again a, number is divisible by 8, when a number formed by its last 3 digits is divisible by 8.

'9y6' is divisible by '8' for y = 3, 7

Now, for divisibility by 9, sum of its digits should be divisible by 9.

for y = 3, '7 + 4 + x + 2 + 9 + 3 + 6' = 31 + x

so, for x = 5, 36 is divisible by 9.

Now, is '7452936' which is divisible by '24' also, so, it is divisible '72'.

Now, $(2x+3y) = 2 \times 5 + 3 \times 3 = 19$.

74. (b) Let the two numbers are 4x and 7x.

H. C. F. of 4x and 7x = x.

Now, x = 26.

So, two numbers are 4×26 and 7×26 .

Sum of two numbers = $4 \times 26 + 7 \times 26 = 11 \times 26 = 286$.

75. (b)
$$x^2 = 1489.96 = \frac{148996}{100}$$

$$\therefore x = \sqrt{\frac{148996}{100}} = \sqrt{\left(\frac{386}{10}\right)^2} = \frac{386}{10} = 38.6$$

76. (d)
$$x = \frac{1}{12.13} + \frac{1}{13.14} + \frac{1}{14.15} + \dots + \frac{1}{23.24}$$

= $\frac{13-12}{12.13} + \frac{14-13}{13.14} + \frac{15-14}{14.15} + \dots + \frac{24-23}{23.24}$

$$= \frac{1}{12} - \frac{1}{13} + \frac{1}{13} - \frac{1}{14} + \frac{1}{14} - \frac{1}{15} + \dots + \frac{1}{23} - \frac{1}{24}$$

$$x = \frac{1}{12} - \frac{1}{24} = \frac{2 - 1}{24} = \frac{1}{24}$$

$$y = \frac{1}{36.37} + \frac{1}{37.38} + \frac{1}{38.39} + \dots + \frac{1}{71.72}$$

$$=\frac{37-36}{36.37}+\frac{38-37}{37.38}+\frac{39-38}{38.39}+\ldots+\frac{72-71}{71.72}$$

$$= \frac{1}{36} - \frac{1}{37} + \frac{1}{37} - \frac{1}{38} + \frac{1}{38} - \frac{1}{39} + \dots + \frac{1}{71} - \frac{1}{72}$$

$$y = \frac{1}{36} - \frac{1}{72} = \frac{2 - 1}{72} = \frac{1}{72}$$

$$\frac{x}{y} = \frac{\frac{1}{24}}{\frac{1}{72}} = \frac{72}{24} = 3$$

77. (d) L. C. M. of 11, 13 and 7

 $= 11 \times 13 \times 7 = 1001.$

Now, from given option '259259' is divisible by '1001'. Hence, '259259' is divisible by 11, 13 and 7.

78. (b) Any number which divisible by 44, must be divisible by 11 also is

> And for any number divisible by 11 the difference of sum of its digits at odd and even places be divisible by

For the given number 15x 1y2

$$(x+y+1)-(5+1+2)=0$$

$$x+y=7$$

79. **(b)** 8439 x 53 is divisible by 99 i.e. given number is divisible by 11 $\therefore (3+x+3+8)-(5+9+4)=0, x=4$

- (1) Arrange the numbers in increasing order.
- (2) Here we have even no. of term. So, we have to add the two middle terms and divide by 2. Data arrange in increasing order

Hence the median is $\frac{55+61}{2} = \frac{116}{2} = 58$

81. (b) L.C.M. of 6 and 7 = 42

Smallest 3 digits number divisible by 6 and 7 is the same that is divisible by 42 and that number is $A = 42 \times 3 = 126$ Largest 4 digits number that is divisible by 6 and 7 is the some that is divisible by 42 and that number is $B = 238 \times 42 = 9996$ Now, B - A = 9996 - 126 = 9870

- 82. (b) The rule of 8 ⇒ If the last three digit of a whole number are divisible by 8 then the entire number is divisible by 8 Put x = 0 and we see that 504 is divided by 8. So, 0 is smallest integer.
- **83.** (c) H.C.F = $2^3 \times 3^2$
- 84. (a) Men Marks

$$= \frac{10 \times 6 + 12 \times 5 + 14 \times 2 + 16 \times 2 + 18 \times 5}{20} = \frac{270}{20} = 13.5$$

85. (d) We know that $(x^n + 1)$ is divisible by (x + 1), for all odd values of n

$$\therefore 77^{77} + 77 = \{(77^{77} + 1) + 76\}$$

Now, $(77^{77} + 1)$ will be divisible by $(77 + 1) = 78$
Hence, remainder = 76.

86. (c) 30 a 68 b

When a number is divisible by 11, then the difference of sum of odd places digits and the sum of even places digits is 0 or multiple of 11.

$$(8+a+3)-(b+6+0)$$
= $(11+a)-(6+b)$
From the option,
If $b=3$ then, $a=9$
and it will divisible by 11.

87. (a) If a number is divisible by 99, then it will also divisible by 9 and 11.

8475639AB

Divisibility by 11: The difference between the sum of odd places digits and sum of even places digits from right hand side should be zero or the factor of 11.

Divisibility by 9: The sum of digits should be divisible by 9.

Sum of digits =
$$8 + 4 + 7 + 5 + 6 + 3 + 9 + A + B$$

= $42 + (A + B)$

 \therefore (A + B) should be 3 or 12.

Difference of odd places digits and even places digits = (B+9+6+7+8)-(A+3+5+4)= B+30-(A+12)= (B-A)+18

∴ (B-A) should be 4

From the options, option 'a' satisfy the conditions.

∴
$$A=4, B=8$$

 $A+B=12$
 $B-A=4$

88. (c) Largest number woluld be HCF of (2036 – 12) and (233 – 13) or HCF of 2024, 220

$$220 = 2 \times 2 \times 5 \times 11$$

So, the number would be 44.

- 89. (c) Weights of bag of tea,
 350 kg, 280 kg, 340 kg, 270 kg, 360 kg, 310 kg,
 300 kg
 ∴ Range = highest weight lowest weight
 - \therefore Range = highest weight lowest weigh = 360 - 270 = 90 kg
- 90. (c) 785x3678y divisibility of 8 = last three digits divisible by 8

$$\frac{78y}{8} \Rightarrow y = 4$$

divisibility of 9 = sum of digits divisible by 9 x=6x-y=6-4=2

91. (c) Difference =
$$(11-7) \times 28 = 112$$

92. (c) 1089 is divisible by 11.

$$\frac{1089}{15} = Remainder 9$$

$$\frac{1089}{18}$$
 = Remainder 9

$$\frac{1089}{36}$$
 = Remainder 9

93. **(b)**
$$\frac{14331433 \times 1422 \times 1425}{12}$$
$$= \frac{1 \times 6 \times 9}{12} = \frac{54}{12}$$
$$= \text{Remainder 6}$$