24 ${ }^{\text {th }}$ Feb. 2021 | Shift - 2 PHYSICS

1. Zener breakdown occurs in a $\mathrm{p}-\mathrm{n}$ junction having p and n both :
(1) lightly doped and have wide depletion layer.
(2) heavily doped andhave narrow depletion layer.
(3) heavily doped and have wide depletion layer.
(4) lightly doped and have narrow depletion layer.

Ans. (2)
Sol. The zener breakdown occurs in the heavily doped p-n junction diode. Heavily doped p-n junction diodes have narrow depletion region.
2. According to Bohr atom model, in which of the following transitions will the frequency be maximum?
(1) $n=2$ to $n=1$
(2) $n=4$ to $n=3$
(3) $n=5$ to $n=4$
(4) $n=3$ to $n=2$

Ans. (1)
Sol.

1 \qquad
f is more for transition from $\mathrm{n}=2$ to $\mathrm{n}=1$.
3. An X-ray tube is operated at 1.24 million volt. The shortest wavelength of the produced photon will be :
(1) $10^{-2} \mathrm{~nm}$
(2) $10^{-3} \mathrm{~nm}$
(3) $10^{-4} \mathrm{~nm}$
(4) $10^{-1} \mathrm{~nm}$

Ans. (2)
Sol. $\quad \lambda_{\text {min }}=\frac{\mathrm{hc}}{\mathrm{eV}}$
$\lambda_{\text {min }}=\frac{1240 \mathrm{~nm}-\mathrm{eV}}{1.24 \times 10^{6}}$
$\lambda_{\text {min }}=10^{-3} \mathrm{~nm}$
4. On the basis of kinetic theory of gases, the gas exerts pressure because its molecules:
(1) suffer change in momentum when impinge on the walls of container.
(2) continuously stick to the walls of container.
(3) continuously lose their energy till it reaches wall.
(4) are attracted by the walls of container.

Ans. (1)
Sol. On the basis of kinetic theory of gases, the gas pressure is due to the molecules suffering change in momentum when impinge on the walls of container.
5. A circular hole of radius $\left(\frac{a}{2}\right)$ is cut out of a circular disc of radius ' a ' shown in figure. The centroid of the remaining circular portion with respect to point ' O ' will be :

(1) $\frac{10}{11} a$
(2) $\frac{2}{3} a$
(3) $\frac{1}{6} a$
(4) $\frac{5}{6} a$

Ans. (4)

Sol. Let σ is the surface mass density of disc.

$X_{\text {com }}=\frac{\left(\sigma \times \pi a^{2} \times a\right)-\left(\sigma \frac{\pi a^{2}}{4} \times \frac{3 a}{2}\right)}{\sigma \pi a^{2}-\frac{\sigma \pi a^{2}}{4}}$
$X_{\text {com }}=\frac{a-3 \frac{a}{8}}{1-\frac{1}{4}}$
$\mathrm{X}_{\text {com }}=\frac{\frac{5 a}{8}}{\frac{3}{4}}$
$X_{\text {com }}=\frac{5 a}{6}$
6. Given below are two statements :

Statement I : PN junction diodes can be used to function as transistor, simply by connecting two diodes, back to back, which acts as the base terminal.
Statement II : In the study of transistor, the amplification factor β indicates ratio of the collector current to the base current.
In the light of the above statements, choose the correct answer from the options given below.
(1) Statement I is false but Statement II is true.
(2) Both Statement I and Statement II are true
(3) Statement I is true but Statement II is false.
(4) Both Statement I and Statement II are false

Ans. (1)
Sol.
Statement 1 is false because in case of two discrete back to back connected diodes, there are four doped regions instead of three and there is nothing that resembles a thin base region between an emitter and a collector.
S-2
Statement-2 is true, as
$\beta=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}$
7. When a particle executes SHM, the nature of graphical representation of velocity as a function of displacement is :
(1)elliptical
(2) parabolic
(3)straight line
(4)circular

Ans. (1)
Sol. We know that is SHM;
$V=\omega \sqrt{A^{2}-\mathrm{x}^{2}}$

elliptical
8. Match List - I with List - II.
List - I
List - II
(a) Source of microwave frequency
(i) Radioactive decay of nucleus
(b) Source of infrared frequency
(ii) Magnetron
(c) Source of Gamma Rays
(iii) Inner shell electrons
(d) Source of X-rays
(iv) Vibration of atoms and molecules
(v) LASER
(vi) RC circuit

Choose the correct answer from the options given below :
(1) (a)-(ii),(b)-(iv),(c)-(i),(d)-(iii)
(2) (a)-(vi),(b)-(iv),(c)-(i),(d)-(v)
(3) (a)-(ii),(b)-(iv),(c)-(vi),(d)-(iii)
(4) (a)-(vi),(b)-(v),(c)-(i),(d)-(iv)

Ans. (1)
Sol. (a) Source of microwave frequency - (ii) Magnetron
(b) Source of infra red frequency - (iv) Vibration of atom and molecules
(c) Source of gamma ray - (i) Radio active decay of nucleus
(d) Source of X-ray - (iii) inner shell electron

The logic circuit shown above is equivalent to :
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

$C=\overline{A+\bar{B}}$
$C=\overline{\mathrm{A}} \cdot \mathrm{B}$
10. If the source of light used in a Young's double slit experiment is changed from red to violet:
(1)the fringes will become brighter.
(2)consecutive fringe lineswill come closer.
(3)the central bright fringe will become a dark fringe.
(4)the intensity of minima will increase.

Ans. (2)

Sol. $\beta=\frac{\lambda D}{d}$
As $\lambda_{v}<\lambda_{R}$
$\Rightarrow \beta_{v}<\beta_{R}$
\therefore Consecutive fringe line will come closer.
\therefore (2)
11. A body weighs 49 N on a spring balance at the north pole. What will be its weight recorded on the same weighing machine, if it is shifted to the equator?
[Use $\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}=9.8 \mathrm{~ms}^{-2}$ and radius of earth, $\mathrm{R}=6400 \mathrm{~km}$.]
(1) 49 N
(2) 49.83 N
(3) 49.17 N
(4) 48.83 N

Ans. (4)
Sol. At north pole, weight
$\mathrm{Mg}=49$
Now, at equator
$\mathrm{g}^{\prime}=\mathrm{g}-\underline{\omega}^{2} \mathrm{R}$
$\Rightarrow M g^{\prime}=M\left(g-\omega^{2} R\right)$
\Rightarrow weight will be less than Mg at equator.
12. If one mole of an ideal gas at $\left(P_{1}, V_{1}\right)$ is allowed to expand reversibly and isothermally (A to B) its pressure is reduced to one-half of the original pressure (see figure). This is followed by a constant volume cooling till its pressure is reduced to one-fourth of the initial value ($B \rightarrow C$). Then it is restored to its initial state by a reversible adiabatic compression (C to A). The net workdone by the gas is equal to :

(1) 0
(2) $-\frac{\mathrm{RT}}{2(\gamma-1)}$
(3) $\mathrm{RT}\left[\ln 2-\frac{1}{2(\gamma-1)}\right]$ (4)RT $\ln 2$

Ans. (3)
Sol. $\quad \mathrm{AB} \rightarrow$ Isothermal process
$\mathrm{W}_{\mathrm{AB}} \rightarrow \mathrm{nRT} \ln 2=\mathrm{RT} \ln 2$
$B C \rightarrow$ Isochoric process
$W_{B C}=0$
$\mathrm{CA} \rightarrow$ Adiabatic process
$W_{C A}=\frac{P_{1} V_{1}-\frac{P_{1}}{4} \times 2 V_{1}}{1-\gamma}=\frac{P_{1} V_{1}}{2(1-\gamma)}=\frac{\mathrm{RT}}{2(1-\gamma)}$
$\mathrm{W}_{\mathrm{ABCA}}=\mathrm{RT} \ell \mathrm{n} 2+\frac{\mathrm{RT}}{2(1-\gamma)}$
$=\operatorname{RT}\left[\ln 2-\frac{1}{2(\gamma-1)}\right]$
13. The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{\frac{L}{g}}$. Measured value of ' L ' is 1.0 m from meter scale having a minimum division of 1 mm and time of one complete oscillation is 1.95 s measured from stopwatch of 0.01 s resolution. The percentage error in the determination of ' g ' will be :
(1)1.33 \%
(2) 1.30 \%
(3)1.13 \%
(4)1.03 \%

Ans. (3)
Sol. $\quad T=2 \pi \sqrt{\frac{\ell}{g}}$
$\mathrm{T}^{2}=4 \pi^{2}\left[\frac{\ell}{g}\right]$
$\mathrm{g}=4 \pi^{2}\left[\frac{\ell}{\mathrm{~T}^{2}}\right]$
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{\Delta \ell}{\ell}+\frac{2 \Delta \mathrm{~T}}{\mathrm{~T}}$
$=\left[\frac{1 \mathrm{~mm}}{1 \mathrm{~m}}+\frac{2\left(10 \times 10^{-3}\right)}{1.95}\right] \times 100$
$=1.13 \%$
14. In the given figure, a body of mass M is held between two massless springs, on a smooth inclined plane. The free ends of the springs are attached to firm supports. If each spring has spring constant k, the frequency of oscillation of given body is :

(1) $\frac{1}{2 \pi} \sqrt{\frac{2 k}{M g \sin \alpha}}$
(2) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mathrm{Mg} \sin \alpha}}$
(3) $\frac{1}{2 \pi} \sqrt{\frac{2 \mathrm{k}}{\mathrm{M}}}$
(4) $\frac{1}{2 \pi} \sqrt{\frac{k}{2 M}}$

Ans. (1)
Sol. Equivalent $\mathrm{K}=\mathrm{K}+\mathrm{K}=2 \mathrm{~K}$
Now, $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}_{\text {eq }}}}$
$\Rightarrow \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{2 \mathrm{k}}}$
$\therefore \mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{2 \mathrm{k}}{\mathrm{m}}}$
15. Figure shows a circuit that contains four identical resistors with resistance $R=2.0 \Omega$. Two identical inductors with inductance $L=2.0 \mathrm{mH}$ and an ideal battery with emf $E=9 . \mathrm{V}$. The current ' i ' just after the switch ' s ' is closed will be :

(1) 9 A
(2) 3.0 A
(3) 2.25 A
(4) 3.37 A

Ans. (3)
Sol. When switch S is closed-

Given : $v=9 v$
From V = IR
$I=\frac{V}{R}$
$R_{\text {eq. }}=2+2=4 \Omega$
$\mathrm{I}=\frac{9}{4}=2.25 \mathrm{~A}$
16. The de Broglie wavelength of a proton and α-particle are equal. The ratio of their velocities is :
(1) $4: 2$
(2) $4: 1$
(3) $1: 4$
(4) $4: 3$

Ans. (2)
Sol. From De-broglie's wavelength :-
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
Given $\lambda_{P}=\lambda_{\alpha}$
$\mathrm{v} \alpha \frac{1}{\mathrm{~m}}$
$\frac{v_{p}}{v_{\alpha}}=\frac{m_{\alpha}}{m_{p}}=\frac{4 m_{p}}{m_{p}}=\frac{4}{1}$
17. Two electrons each are fixed at a distance ' $2 d^{\prime}$ '. A third charge proton placed at the midpoint is displaced slightly by a distance $x(x \ll d)$ perpendicular to the line joining the two fixed charges. Proton will execute simple harmonic motion having angular frequency:
($m=$ mass of charged particle)
(1) $\left(\frac{q^{2}}{2 \pi \varepsilon_{0}{m d^{3}}^{3}}\right)^{\frac{1}{2}}$
(2) $\left(\frac{\pi \varepsilon_{0} m d^{3}}{2 q^{2}}\right)^{\frac{1}{2}}$
(3) $\left(\frac{2 \pi \varepsilon_{0} \mathrm{md}^{3}}{\mathrm{q}^{2}}\right)^{\frac{1}{2}}$
(4) $\left(\frac{2 q^{2}}{\pi \varepsilon_{0} \mathrm{md}^{3}}\right)^{\frac{1}{2}}$

Ans. (1)

Sol.

Restoring force on proton :-
$F_{r}=\frac{2 K q^{2} y}{\left[d^{2}+y^{2}\right]^{\frac{3}{2}}}$
Y $\lll d$
$F_{r}=\frac{2 k q^{2} y}{d^{3}}=\frac{q^{2} y}{2 \pi \varepsilon_{0} d^{3}}=k y$
$K=\frac{q^{2}}{2 \pi \varepsilon_{0} d^{3}}$
Angular Frequency :-
$\omega=\sqrt{\frac{k}{m}}$
$\omega=\sqrt{\frac{\mathrm{q}^{2}}{2 \pi \varepsilon_{0} \mathrm{md}^{3}}}$
18. A soft ferromagnetic material is placed in an external magnetic field. The magnetic domains :
(1) decrease in size and changes orientation.
(2) may increase or decrease in size and change its orientation.
(3) increase in size but no change in orientation.
(4) have no relation with external magnetic field.

Ans. (2)
Sol. Atoms of ferromagnetic material in unmagnetised state form domains inside the ferromagnetic material. These domains have large magnetic moment of atoms. In the absence of magnetic field, these domains have magnetic moment in different directions. But when the magnetic field is applied, domains aligned in the direction of the field grow in size and those aligned in the direction opposite to the field reduce in size and also its orientation changes.
19. Which of the following equations represents a travelling wave?
(1) $y=A e^{-x^{2}}(v t+\theta)$
(2) $y=A \sin (15 x-2 t)$
(3) $y=A e^{x} \cos (\omega t-\theta)$
(4) $y=A \sin x \cos \omega t$

Ans. (2)
Sol. $\quad Y=F(x, t)$
For travelling wave y should be linear function of x and t and they must exist as ($x \pm v t$) $Y=A \sin (15 x-2 t) \rightarrow$ linear function in x and t.
20. A particle is projected with velocity v_{0} along x-axis. A damping forceis acting on the particle which is proportional to the square of the distance from the origin i.e. $m a=-\alpha x^{2}$. The distance at which the particle stops :
(1) $\left(\frac{2 v_{0}}{3 \alpha}\right)^{\frac{1}{3}}$
(2) $\left(\frac{3 v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{2}}$
(3) $\left(\frac{3 v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{3}}$
(4) $\left(\frac{2 v_{0}^{2}}{3 \alpha}\right)^{\frac{1}{2}}$

Ans. Bonus

Sol. $\mathrm{a}=\frac{\mathrm{vdv}}{\mathrm{dx}}$
$\int_{v_{i}}^{v_{f}} V d v=\int_{x_{i}}^{x_{f}} a d x$
Given :- $\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{0}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{f}}=0 \\
& X_{i}=0 \\
& X_{f}=\mathrm{X}
\end{aligned}
$$

From Damping Force : $a=-\frac{\alpha x^{2}}{m}$
$\int_{V_{0}}^{0} V d V=-\int_{0}^{x} \frac{\alpha x^{2}}{m} d x$
$-\frac{v_{0}^{2}}{2}=\frac{-\alpha}{m}\left[\frac{x^{3}}{3}\right]$
$x=\left[\frac{3 m v_{0}^{2}}{2 \alpha}\right]^{\frac{1}{3}}$

1. A uniform metallic wire is elongated by 0.04 m when subjected to a linear force F. The elongation, if its length and diameter is doubled andsubjected to the same force will be

Ans. 2
Sol.

$y=\frac{F / A}{\Delta \ell / \ell}$
$\Rightarrow \frac{\mathrm{F}}{\mathrm{A}}=\mathrm{y} \frac{\Delta \ell}{\ell}$
$\Rightarrow \frac{\mathrm{F}}{\mathrm{A}}=\mathrm{y} \times \frac{0.04}{\ell}$
When length \& diameter is doubled.
$\Rightarrow \frac{\mathrm{F}}{4 \mathrm{~A}}=\mathrm{y} \times \frac{\Delta \ell}{2 \ell}$
(1) $\div(2)$
$\frac{F / A}{F / 4 A}=\frac{y \times \frac{0.04}{\ell}}{y \times \frac{\Delta \ell}{2 \ell}}$
$4=\frac{0.04 \times 2}{\Delta \ell}$
$\Delta \ell=0.02$
$\Delta \ell=2 \times 10^{-2}$
$\therefore \mathrm{x}=2$
2. A cylindrical wire of radius 0.5 mm and conductivity $5 \times 10^{7} \mathrm{~S} / \mathrm{m}$ is subjected to an electric field of $10 \mathrm{mV} / \mathrm{m}$. The expected value of current in the wire will be $x^{3} \pi \mathrm{~mA}$. The value of x is \qquad .

Ans. 5

Sol. We know that
$\mathrm{J}=\sigma \mathrm{E}$
$\Rightarrow \mathrm{J}=5 \times 10^{7} \times 10 \times 10^{-3}$
$\Rightarrow \mathrm{J}=50 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}$
Currentflowing ;
$\mathrm{I}=\mathrm{J} \times \pi \mathrm{R}^{2}$
$\mathrm{I}=50 \times 10^{4} \times \pi\left(0.5 \times 10^{-3}\right)^{2}$
$\mathrm{I}=5 \times 10^{4} \times \pi \times 0.25 \times 10^{-6}$
$\mathrm{I}=125 \times 10^{-3} \pi$
$\mathrm{X}=5$
3. Two cars are approaching each other at an equal speed of $7.2 \mathrm{~km} / \mathrm{hr}$. When they see each other, both blow horns having frequency of 676 Hz . The beat frequency heard by each driver will be \qquad Hz . [Velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$.]
Ans. 8

Sol.

Speed $=7.2 \mathrm{~km} / \mathrm{h}=2 \mathrm{~m} / \mathrm{s}$
Frequency as heard by A
$f_{A}^{\prime}=f_{B}\left(\frac{v+v_{0}}{v-v_{s}}\right)$
$f_{A}^{\prime}=676\left(\frac{340+2}{340-2}\right)$
$f_{A}^{\prime}=684 \mathrm{~Hz}$
$\therefore \mathrm{f}_{\text {Beat }}=\mathrm{f}_{\mathrm{A}}^{\prime}-\mathrm{f}_{\mathrm{B}}$
$=684-676$
$=8 \mathrm{~Hz}$
4. A uniform thin bar of mass 6 kg and length 2.4 meter is bent to make an equilateral hexagon. The moment of inertia about an axis passing through the centre of mass and perpendicular to the plane of hexagon is \qquad $\times 10^{-1} \mathrm{~kg} \mathrm{~m}^{2}$.
Ans. 8
Sol.

MOI of $A B$ about $P: I_{A B P}=\frac{\frac{M}{6}\left(\frac{\ell}{6}\right)^{2}}{12}$
MOI of $A B$ about O,
$I_{A B_{O}}=\left[\frac{\frac{M}{6}\left(\frac{\ell}{6}\right)^{2}}{12}+\frac{M}{6}\left(\frac{\ell}{6} \frac{\sqrt{3}}{2}\right)^{2}\right]$
$\mathrm{I}_{\text {Hexagon }}^{0}=6 \mathrm{I}_{\mathrm{AB}_{0}}=\mathrm{M}\left[\frac{\ell^{2}}{12 \times 36}+\frac{\ell^{2}}{36} \times \frac{3}{4}\right]$
$=\frac{6}{100}\left[\frac{24 \times 24}{12 \times 36}+\frac{24 \times 24}{36} \times \frac{3}{4}\right]$
$=0.8 \mathrm{kgm}^{2}$
$=8 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{2}$
5. A point charge of $+12 \mu \mathrm{C}$ is at a distance 6 cm vertically above the centre of a square of side 12 cm as shown in figure. The magnitude of the electric flux through the square will be \qquad $\times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$.

Ans. 226
Sol. Using Gauss law, it is a part of cube of side 12 cm and charge at centre so;
$\phi=\frac{\mathrm{Q}}{6 \varepsilon_{0}}=\frac{12 \mu \mathrm{C}}{6 \varepsilon_{0}}=2 \times 4 \pi \times 9 \times 10^{9} \times 10^{-6}$
$=226 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$
6. Two solids A and B of mass 1 kg and 2 kg respectively are moving withequal linear momentum. The ratio of their kinetic energies (K.E.) A : (K.E. $)_{B}$ will be $\frac{A}{1}$. So the value of A will be

Ans. 2
Sol. Given that, $\frac{M_{1}}{M_{2}}=\frac{1}{2}$
Also, $\mathrm{p}_{1}=\mathrm{p}_{2}=\mathrm{p}$
$\Rightarrow M_{1} V_{1}=M_{2} V_{2}=p$
Also, we know that
$K=\frac{p^{2}}{2 M} \Rightarrow K_{1}=\frac{p^{2}}{2 M_{1}} \& \Rightarrow K_{2}=\frac{p^{2}}{2 M_{2}}$
$\Rightarrow \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{p}^{2}}{2 \mathrm{M}_{1}} \times \frac{2 \mathrm{M}_{2}}{\mathrm{p}^{2}} \Rightarrow \frac{\mathrm{~K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{2}{1}$
$\Rightarrow \frac{\mathrm{A}}{1}=\frac{2}{1} \Rightarrow \therefore \mathrm{~A}=2$
7. The root mean square speed of molecules of a given mass of a gas at $27^{\circ} \mathrm{C}$ and 1 atmosphere pressure is $200 \mathrm{~ms}^{-1}$. The root mean square speed of molecules of the gas at $127^{\circ} \mathrm{C}$ and 2 atmosphere pressure is $\frac{x}{\sqrt{3}} \mathrm{~ms}^{-1}$. The value of x will be \qquad -.

Ans. 400 m/s

Sol. $\quad V_{r m s} \sqrt{\frac{3 R T_{1}}{M_{0}}}$
$200=\sqrt{\frac{3 R \times 300}{M_{0}}}$
Also, $\frac{x}{\sqrt{3}}=\sqrt{\frac{3 R \times 400}{M_{0}}}$
(1) $\div(2)$
$\frac{200}{x / \sqrt{3}}=\sqrt{\frac{300}{400}}=\sqrt{\frac{3}{4}}$
$\Rightarrow x=400 \mathrm{~m} / \mathrm{s}$
8. A series LCR circuit is designed to resonate at an angular frequency $\omega_{0}=10^{5} \mathrm{rad} / \mathrm{s}$. The circuit draws 16 W power from 120 V source at resonance. The value of resistance ' R ' in the circuit is
\qquad Ω.
Ans. 900
Sol. $P=\frac{V^{2}}{R}$
$16=\frac{120^{2}}{R} \Rightarrow R=\frac{14400}{16}$
$\Rightarrow \mathrm{R}=900 \Omega$
9. An electromagnetic wave of frequency 3 GHz enters a dielectric medium of relative electric permittivity 2.25 from vacuum. The wavelength of this wave in that medium wil be \qquad $\times 10^{-2} \mathrm{~cm}$.

Ans. 667
Sol. $f=3 G H z, \varepsilon_{r}=2.25$
$v=\lambda f \Rightarrow \lambda=\frac{v}{f}$
$C=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
$v=\frac{1}{\sqrt{\mu_{0} \mu_{r} \varepsilon_{0} \varepsilon_{r}}} \Rightarrow \lambda=\frac{1}{f \cdot \sqrt{\mu_{0} \varepsilon_{0}} \cdot \sqrt{\mu_{r} \varepsilon_{r}} \cdot \mathrm{f}}$
$\Rightarrow \lambda=\frac{C}{\mathrm{f} \cdot \sqrt{\mu_{\mathrm{r}}} \cdot \sqrt{\varepsilon_{r}}} \Rightarrow \lambda=\frac{3 \times 10^{8}}{3 \times 10^{9} \times \sqrt{1} \times \sqrt{2.25}}$
$\Rightarrow \lambda=667 \times 10^{-2} \mathrm{~cm}$
10. A signal of 0.1 kW is transmitted in a cable. The attenuation of cable is -5 dB per km and cable length is 20 km . the power received at receiver is $10^{-x} \mathrm{~W}$. The value of x is \qquad _
[Gain in $d B=10 \log _{10}\left(\frac{P_{0}}{P_{i}}\right)$]
Ans. 8
Sol. Power of signal transmitted: $\mathrm{P}_{\mathrm{i}}=0.1 \mathrm{Kw}=100 \mathrm{w}$
Rate of attenuation $=-5 \mathrm{~dB} / \mathrm{Km}$
Total length of path $=20 \mathrm{~km}$
Total loss suffered $=-5 \times 20=-100 \mathrm{~dB}$
Gain in $d B=10 \log _{10} \frac{P_{0}}{P_{i}}$
$-100=10 \log _{10} \frac{P_{0}}{P_{i}}$
$\Rightarrow \log _{10} \frac{P_{i}}{P_{0}}=10$
$\Rightarrow \log _{10} \frac{P_{i}}{P_{0}}=\log _{10} 10^{10}$
$\Rightarrow \frac{100}{P_{0}}=10^{10}$
$\Rightarrow P_{0}=\frac{1}{10^{8}}=10^{-8}$
$\therefore \mathrm{x}=8$

24 ${ }^{\text {th }}$ Feb. 2021 | Shift - 2
 CHEMISTRY

1. The correct order of the following compounds showing increasing tendency towards nucleophilic substitution reaction is :

(i)

(ii)

(iii)

(iv)
(1) (iv) < (i) < (iii) < (ii)
(2) (iv) < (i) < (ii) < (iii)
(3) (i) < (ii) < (iii) < (iv)
(4) (iv) < (iii) < (ii) < (i)

Ans. (3)

Sol.

Reactivity $\propto-m$ group present at O/P position.
2. Match List-I with List-II

List- I
(Metal)
(a) Aluminium
(b) Iron
(c) Copper
(d) Zinc

List-II
(Ores)
(i) Siderite
(ii) Calamine
(iii) Kaolinite
(iv) Malachite

Choose the correct answer from the options given below :
(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Ans. (3)
Sol. Siderite FeCO_{3}
Calamine ZnCO_{3}
Kaolinite $\quad \mathrm{Si}_{2} \mathrm{Al}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}$ or $\mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{SiO}_{2} .2 \mathrm{H}_{2} \mathrm{O}$
Malachite $\quad \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
3. Match List-I with List-II

List- I	List-II
(Salt)	(Flame colour wavelength)
(a) LiCl	(i) 455.5 nm
(b) NaCl	(ii) 970.8 nm
(c) RbCl	(iii) 780.0 nm
(d) CsCl	(iv) 589.2 nm

Choose the correct answer from the options given below :
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
(3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
(4) (a)-(i), (b)-(iv), (c)-(ii), (d)-(iii)

Ans. (2)
Sol. Range of visible region : - 390nm-760nm
VIBGYOR
Violet Red
LiCl Crimson Red
NaCl Golden yellow
RbCl Violet
CsCl Blue
So Licl Which is crimson have wave length closed to red in the spectrum of visible region which is as per given data is.
4. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Hydrogen is the most abundant element in the Universe, but it is not the most abundant gas in the troposphere.
Reason R : Hydrogen is the lightest element.
In the light of the above statements, choose the correct answer from the given below
(1) A is false but R is true
(2) Both A and R are true and R is the correct explanation of A
(3) A is true but R is false
(4) Both A and R are true but R is NOT the correct explanation of A

Ans. (2)
Sol. Hydrogen is most abundant element in universe because all luminous body of universe i.e. stars \& nebulae are made up of hydrogen which acts as nuclear fuel \& fusion reaction is responsible for their light.
5. Given below are two statements :

Statement I : The value of the parameter "Biochemical Oxygen Demand (BOD)" is important for survival of aquatic life.

Statement II : The optimum value of BOD is 6.5 ppm .
In the light of the above statements, choose the most appropriate answer from the options given below.
(1) Both Statement I and Statement II are false
(2) Statement I is false but Statement II is true
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are true

Ans. (3)
Sol. For survival of aquatic life dissolved oxygen is responsible its optimum limit 6.5 ppm and optimum limit of BOD ranges from $10-20 \mathrm{ppm} \& B O D$ stands for biochemical oxygen demand.
6. Wich one of the following carbonyl compounds cannot be prepared by addition of wate on an alkyne in the presence of HgSO_{4} and $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Reaction of Alkyne with $\mathrm{HgSO}_{4} \& \mathrm{H}_{2} \mathrm{SO}_{4}$ follow as
$\mathrm{CH} \equiv \mathrm{CH} \quad \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{HgSO}_{2} \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3} \mathrm{CHO}$
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{HgSO}_{4} \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}$
Hence, by this process preparation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
Cann't possible.
7. Which one of the following compounds is non-aromatic ?
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

Hence It is non-aromatic.
8. The incorrect statement among the following is:
(1) VOSO_{4} is a reducing agent
(2) Red colour of ruby is due to the presence of CO^{3+}
(3) $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is an amphoteric oxide
(4) RuO_{4} is an oxidizing agent

Ans. (2)
Sol. Red colour of ruby is due to presence of CrO_{3} or Cr^{+6} not CO^{3+}
9. According to Bohr's atomic theory :
(A) Kinetic energy of electron is $\propto \frac{z^{2}}{n^{2}}$
(B) The product of velocity (v) of electron and principal quantum number (n). 'vn' $\propto \mathrm{Z}^{2}$.
(C) Frequency of revolution of electron in an orbit is $\propto \frac{\mathrm{Z}^{3}}{\mathrm{n}^{3}}$.
(D) Coulombic force of attraction on the electron is $\propto \frac{\mathrm{z}^{3}}{\mathrm{n}^{4}}$.

Choose the most appropriate answer from the options given below:
(1) (C) only
(2) (A) and (D) only
(3) (A) only
(4) (A), (C) and (D) only

Ans. (2) Correction on NTA

Sol. (A) $K E=-T E=13.6 \times \frac{Z^{2}}{n^{2}} e V$
$K E \propto \frac{Z^{2}}{n^{2}}$
(B) $V=2.188 \times 10^{6} \times \frac{Z}{n} \mathrm{~m} / \mathrm{sec}$.

So, $V n \propto Z$
(C) Frequency $=\frac{V}{2 \pi r}$

So, $F \propto \frac{\mathrm{Z}^{2}}{\mathrm{n}^{3}} \quad\left[\therefore \mathrm{r} \propto \frac{\mathrm{n}^{2}}{\mathrm{z}}\right.$ and $\left.\mathrm{v} \propto \frac{\mathrm{Z}}{\mathrm{n}}\right]$
(D) Force $\propto \frac{z}{r^{2}}$

So, $F \propto \frac{Z^{3}}{n^{4}}$
So, only statement (A) is correct
10. Match List-I with List-II

List- I
List-II
(a) Valium
(i) Antifertility drug
(b) Morphine
(ii) Pernicious anaemia
(c) Norethindrone
(iii) Analgesic
(d) Vitamin B_{12}
(iv) Tranquilizer
(1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(2) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
(3) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
(4) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)

Ans. (4)
Sol. (a) Valium
(iv) Tranquilizer
(b) Morphine
(iii) Analgesic
(c) Norethindrone
(i) Antifertility drug
(d) Vitamin B_{12}
(ii) Pernicious anaemia
11. The Correct set from the following in which both pairs are in correct order of melting point is :
(1) $\mathrm{LiF}>\mathrm{LiCl} ; \mathrm{NaCl}>\mathrm{MgO}$
(2) $\mathrm{LiF}>\mathrm{LiCl} ; \mathrm{MgO}>\mathrm{NaCl}$
(3) $\mathrm{LiCl}>\mathrm{LiF} ; \mathrm{NaCl}>\mathrm{MgO}$
(4) $\mathrm{LiCl}>\mathrm{LiF} ; \mathrm{MgO}>\mathrm{NaCl}$

Ans. (2)
Sol. Generally
M.P. \propto Lattice energy $=\frac{K Q Q_{1} Q_{2}}{r^{+}+r^{-}}$
\propto (packing efficiency)
12. The calculated magnetic moments (spin only value) for species $\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ and MnO_{4}^{2-} respectively are :
(1) 5.92, 4.90 and 0 BM
(2) $5.82, O$ and $0 B M$
(3) 4.90, 0 and 1.73 BM
(4) 4.90, 0 and 2.83 BM

Ans. (3)
Sol. $\quad\left[\mathrm{FeCl}_{4}\right]^{2-} \mathrm{Fe}^{2+} 3 \mathrm{~d}^{6} \rightarrow 4$ unpaired electron. as Cl^{-}in a weak field liquid.
$\mu_{\text {spin }}=\sqrt{24} 8 \mathrm{M}$
$=4.9 \mathrm{BM}$
$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} \mathrm{Co}^{3+} 3 \mathrm{~d}^{6} \rightarrow$ for Co^{3+} with coodination no. $6 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ is strong field ligend $\&$ causes pairing \& hence no. unpaired electron
$\mu_{\text {spin }}=0$
$\left[\mathrm{MnO}_{4}\right]^{2-} \mathrm{Mn}^{+6}$ it has one unpaired electron.
$\mu_{\text {spin }}=\sqrt{3} B M$
13.

Which of the following reagent is suitable for the preparation of the product in the above reaction.
(1) Red $\mathrm{P}+\mathrm{Cl}_{2}$
(2) $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
(3) $\mathrm{Ni} / \mathrm{H}_{2}$
(4) NaBH_{4}

Ans. (2)

Sol.

It is wolf-kishner reduction of carbonyl compounds.
14. The diazonium salt of which of the following compounds will form a coloured dye on reaction with β-Naphthol in NaOH ?
(1)

(2)

(2)

(4)

Ans. (3)

Sol.

15. What is the correct sequence of reagents used for converting nitrobenzene into mdibromobenzene ?

$(1) \xrightarrow{\mathrm{Sn} / \mathrm{HCl}} / \xrightarrow{\mathrm{Br}_{2}} / \xrightarrow{\mathrm{NaNO}_{2}} / \xrightarrow{\mathrm{NaBr}}$
(2)
$\xrightarrow{\mathrm{Sn} / \mathrm{HCl}} / \xrightarrow{\mathrm{KBr}} / \xrightarrow{\mathrm{Br}_{2}} / \xrightarrow{\mathrm{H}^{+}}$
(3) $\xrightarrow{\mathrm{NaNO}_{2}} / \xrightarrow{\mathrm{HCl}} / \xrightarrow{\mathrm{KBr}} / \xrightarrow{\mathrm{H}^{+}}$
(4) $\xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} / \xrightarrow{\mathrm{Sn} / \mathrm{HCl}} / \xrightarrow{\mathrm{NaNO}_{2} / \mathrm{HCl}} / \xrightarrow{\mathrm{CuBr} / \mathrm{HBr}}$

Ans. (4)

16. The correct shape and I-I-I bond angles respectively in I_{3}^{-}ion are :
(1) Trigonal planar; 120°
(2) Distorted trigonal planar; 135° and 90°
(3) Linear; 180°
(4) T-shaped; 180° and 90°

Ans. (3)
Sol. $\quad \mathrm{I}_{3}^{-} \mathrm{sp}^{3} \mathrm{~d}$ hybridisation (2BP + 3L.P.) Linear geometry

17. What is the correct order of the following elements with respect to their density ?
(1) $\mathrm{Cr}<\mathrm{Fe}<\mathrm{Co}<\mathrm{Cu}<\mathrm{Zn}$
(2) $\mathrm{Cr}<\mathrm{Zn}<\mathrm{Co}<\mathrm{Cu}<\mathrm{Fe}$
(3) $\mathrm{Zn}<\mathrm{Cu}<\mathrm{Co}<\mathrm{Fe}<\mathrm{Cr}$
(4) $\mathrm{Zn}<\mathrm{Cr}<\mathrm{Fe}<\mathrm{Co}<\mathrm{Cu}$

Ans. (4)
Sol. Fact Based
Density depend on many factor like atomic mass. atomic radius and packing efficiency.
18. Match List-I and List-II.

List - I
$\stackrel{\mathrm{O}}{\text { II }}$
(a) $\mathrm{R}-\mathrm{C}-\mathrm{Cl} \rightarrow \mathrm{R}-\mathrm{CHO}$
(b) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{COOH} \rightarrow \underset{\mathrm{Cl}}{\mathrm{R}}-\underset{\mathrm{Cl}}{\mathrm{CH}}-\mathrm{COOH}$

0
II
(c) $\mathrm{R}-\mathrm{C}-\mathrm{NH}_{2} \rightarrow \mathrm{R}-\mathrm{NH}_{2}$

0
II
(d) $\mathrm{R}-\mathrm{C}-\mathrm{CH}_{3} \rightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Choose the correct answer from the options given below :
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
(3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

Ans. (4)

(b) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{COOH} \xrightarrow{\mathrm{Cl}_{2} / \text { Red } \mathrm{P}, \mathrm{H}_{2} \mathrm{O}} \mathrm{R}-\mathrm{CH}-\mathrm{COOH}$ (HVZ reaction)
|

0
II
(c) $\mathrm{R}-\mathrm{C}-\mathrm{NH}_{2} \xrightarrow{\mathrm{Br}_{2} / \mathrm{NaOH}} \mathrm{R}-\mathrm{NH}_{2}$ (Hoffmann Bromamide reaction)

O
II
(d) $\mathrm{R}-\mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Zn}(\mathrm{Hg} / \text { /conc. } \mathrm{HCl}} \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ (Clemmensen reaction)
19. In polymer Buna-S ; 'S' stands for :
(1) Styrene
(2) Sulphur
(3) Strength
(4) Sulphonation

Ans. (1)
Sol. Buna-S is the co-polymer of buta- 1, 3 diene \& styrene.
20. Most suitable salt which can be used for efficient clotting of blood will be :
(1) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
(2) FeSO_{4}
(3) NaHCO_{3}
(4) FeCl_{3}

Ans. (4)
Sol. Blood is a negative sol. According to hardy-Schulz's rule, the cation with high charge has high coagulation power. Hence, FeCl_{3} can be used for clotting blood.

Section -B

1. The magnitude of the change in oxidising power of the $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}$ couple is $\mathrm{x} \times 10^{-4} \mathrm{~V}$, if the H^{+}concentration is decreased from 1 M to $10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. (Assume concentration of MnO_{4}^{-}and Mn^{2+} to be same on change in H^{+}concentration). The value of x is \qquad . (Rounded off to the nearest integer)
$\left[\right.$ Given : $\left.\frac{2303 R T}{F}=0.059\right]$
Ans. 3776
Sol. $5 \mathrm{e}^{-}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Q}=\frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{H}^{+}\right]^{8}\left[\mathrm{MnO}_{4}^{-}\right]} \quad \Rightarrow \quad \mathrm{E}_{1}=\mathrm{E}^{\circ}-\frac{0.059}{5} \log \left(\mathrm{Q}_{1}\right)$
$E_{2}=E^{\circ}-\frac{0.059}{5} \log \left(Q_{2}\right) \quad \Rightarrow \quad E_{2}-E_{1}=\frac{0.059}{5} \log \left(\frac{Q_{1}}{Q_{2}}\right)$
$=\frac{0.059}{5} \log \left\{\frac{\left[\mathrm{H}^{+}\right]_{\mathrm{II}}}{\left[\mathrm{H}^{+}\right]_{\mathrm{I}}}\right\}^{8} \quad \Rightarrow \quad=\frac{0.059}{5} \log \left(\frac{10^{-4}}{1}\right)^{8}$
$\left(E_{2}-E_{1}\right)=\frac{0.059}{5} \times(-32) \quad \Rightarrow \quad\left|\left(E_{2}-E_{1}\right)\right|=32 \times \frac{0.059}{5}=x \times 10^{-4}$
$=\frac{32 \times 590}{5} \times 10^{-4}=x \times 10^{-4} \Rightarrow \quad=3776 \times 10^{-4} \quad x=3776$
2. Among the following allotropic forms of sulphur, the number of allotropic forms, which will show paramagnetism is \qquad _.
(1) α-sulphur
(2) β-sulphur
(3) S_{2}-form

Ans. (1)
Sol. S_{2} is like O_{2} i; e paramagnetic as per molecular orbital theory.
3. $\mathrm{C}_{6} \mathrm{H}_{6}$ freezes at $5.5^{\circ} \mathrm{C}$. The temperature at which a solution of 10 g of $\mathrm{C}_{4} \mathrm{H}_{10}$ in 200 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ freeze is \qquad ${ }^{\circ} \mathrm{C}$. (The molal freezing point depression constant of $\mathrm{C}_{6} \mathrm{H}_{6}$ is) $5.12^{\circ} \mathrm{C} / \mathrm{m}$)

Ans. 1
Sol. $\Delta T_{f}=i \times K_{f} \times m$
$=(1) \times 5.12 \times \frac{10 / 58}{200} \times 1000 \quad \Rightarrow \quad \Delta T_{f}=\frac{5.12 \times 50}{58}=4.414$
$T_{f(\text { solution })}=T_{K(\text { solvent })}-\Delta T_{f}$
$=5.5-4.414$
$=1.086^{\circ} \mathrm{C}$
$\approx 1.09^{\circ} \mathrm{C}=1$ (nearest integer)
4. The volume occupied by 4.75 g of acetylene gas at $50^{\circ} \mathrm{C}$ and 740 mmHg pressure is \qquad L.
(Rounded off to the nearest integer)
(Given $\mathrm{R}=0.0826 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Ans. 5
Sol. $\quad \mathrm{T}=50^{\circ} \mathrm{C}=323.15 \mathrm{~K}$
$P=740 \mathrm{~mm}$ of $\mathrm{Hg}=\frac{740}{760} \mathrm{~atm}$
$\mathrm{V}=$?
moles $(n)=\frac{4.75}{26}$
$V=\frac{4.75}{26} \times \frac{0.0821 \times 323.15}{740} \times 760$
$V=4.97 \simeq 5$ Lit
5. The solubility product of PbI_{2} is 8.0×10^{-9}. The solubility of lead iodide in 0.1 molar solution of lead nitrate is $x \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. The value of x is \qquad (Rounded off to the nearest integer)
[Given $\sqrt{2}=1.41$]
Ans. 141
Sol. $\mathrm{K}_{\mathrm{SP}}\left(\mathrm{PbI}_{2}\right)=8 \times 10^{-9}$
$\mathrm{PbI}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})$

$$
S+0.1 \quad 2 S
$$

$\mathrm{K}_{\mathrm{SP}}=\left[\mathrm{Pb}^{+2}\right]\left[\mathrm{I}^{-}\right]^{2}$
$8 \times 10^{-9}=(S+0.1)(2 S)^{2} \Rightarrow 8 \times 10^{-9} \simeq 0.1 \times 4 \mathrm{~S}^{2}$
$\Rightarrow S^{2}=2 \times 10^{-8}$
$\mathrm{S}=1.414 \times 10^{-4} \mathrm{~mol} /$ Lit
$=x \times 10^{-6} \mathrm{~mol} / \mathrm{Lit}$
$\therefore \quad x=141.4 \simeq 141$
6. The total number of amines among the following which can be synthesized by Gabriel synthesis is \qquad —.
(1)

(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(3)

(4)

Ans. (3)
Sol. Only aliphatic amines can be prepared by Gabriel synthesis.
7. 1.86 g of aniline completely reacts to form acetanilide. 10% of the product is lost during purificatiion. Amount of acetanilide obtained after purification (in g) is \qquad $\times 10^{-2}$.

Ans. 243

Sol. $\mathrm{Ph}-\mathrm{NH}_{2} \longrightarrow \mathrm{Ph}-\mathrm{NH}-\mathrm{C}-\mathrm{CH}_{3}$ $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right) \quad$ (Ace tanilide) $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}\right)$
Molar mass $=93$ Molarmass $=135$
93 g Aniline produce 135 g acetanilide
1.86 g produce $\frac{135 \times 1.86}{93}=2.70 \mathrm{~g}$

At 10% loss, 90% product will be formed after purification.
\therefore Amount of product obtained $=\frac{2.70 \times 90}{100}=2.43 \mathrm{~g}=243 \times 10^{-2} \mathrm{~g}$
8. The formula of a gaseous hydrocarbon which requires 6 times of its own volume of O_{2} for complete oxidation and produces 4 times its own volume of CO_{2} is $\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}$. The value of y is \qquad

Ans. 8
Sol. $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+6 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}$
Applying POAC on 'O' atoms
$6 \times 2=4 \times 2+y / 2 \times 1$
$y / 2=4 \Rightarrow y=8$
9. Sucrose hydrolyses in acid solution into glucose and fructose following first order rate law with a half-life of 3.33 h at $25^{\circ} \mathrm{C}$. After 9 h , the fraction of sucrose remaining is f . The value of $\log _{10}\left(\frac{1}{f}\right)$ is \qquad $\times 10^{-2}$ (Rounded off to the nearest integer)
[Assume: $\ln 10=2.303, \ln 2=0.693$]

Ans. 81

Sol. Sucose $\xrightarrow{\text { Hydrolysis }}$ Glucose + Fructose
$\mathrm{t}_{1 / 2}=3.33 \mathrm{~h}=\frac{10}{3} \mathrm{~h} \quad \Rightarrow \quad C_{t}=\frac{C_{0}}{2^{t / t_{1 / 2}}}$
Fraction of sucrose remaining $=f=\frac{C_{t}}{C_{0}}=\frac{1}{2^{t / t_{1 / 2}}}$
$\frac{1}{f}=2^{t / t_{1 / 2}}$
$\log (1 / f)=\log \left(2^{t / t_{1 / 2}}\right)=\frac{t}{t_{1 / 2}} \log (2)$
$=\frac{9}{10 / 3} \times 0.3=\frac{8.1}{10}=0.81=x \times 10^{-2} \quad x=81$
10. Assuming ideal behaviour, the magnitude of $\log \mathrm{K}$ for the following reaction at $25^{\circ} \mathrm{C}$ is $\times \times 10^{-1}$.

The value of x is \qquad . (Integer answer)

$$
3 \mathrm{HC} \equiv \mathrm{CH}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6(\ell)}
$$

[Given : $\Delta_{f} G^{\circ}(\mathrm{HC} \equiv \mathrm{CH})=-2.04 \times 10^{5}$] $\mathrm{mol}^{-1} ; \Delta_{f} \mathrm{G}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=-1.24 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$;
$\left.\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
Ans. 855
Sol. $3 \mathrm{HC} \equiv \mathrm{CH}(\mathrm{g}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}(\ell)$
$\Delta \mathrm{G}_{\mathrm{r}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left[\mathrm{C}_{6} \mathrm{H}_{8}(\ell)\right]-3 \times \Delta \mathrm{G}_{\mathrm{f}}^{\circ}[\mathrm{HC} \equiv \mathrm{CH}]$
$=\left[-1.24 \times 10^{5}-3 x\left(-2.04 \times 10^{5}\right)\right]$
$=4.88 \times 10^{5} \mathrm{~J} / \mathrm{mol}$
$\Delta G_{r}^{0}=-R T \ln \left(K_{\text {eq }}\right)$
$\log \left(\mathrm{K}_{\mathrm{eq}}\right)=\frac{-\Delta \mathrm{G}^{\circ}}{2.303 \mathrm{RT}}$
$=\frac{-4.88 \times 10^{5}}{2.303 \times 8.314 \times 298}$
$=-8.55 \times 10^{1}=855 \times 10^{-1}$

24 ${ }^{\text {th }}$ Feb. 2021 |Shift - 2 MATHEMATICS

1. Let $a, b \in R$. If the mirror image of the point $P(a, 6,9)$ with respect to the line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, \mathrm{~b},-\mathrm{a}-9)$, then $|\mathrm{a}+\mathrm{b}|$ is equal to :
(1) 86
(2) 88
(3) 84
(4) 90

Ans. (2)
Sol. $P(a, 6,9), Q(20, b,-a-9)$
mid point of $\mathrm{PQ}=\left(\frac{\mathrm{a}+20}{2}, \frac{\mathrm{~b}+6}{2},-\frac{\mathrm{a}}{2}\right)$
lie on line
$\frac{\frac{a+20}{2}-3}{7}=\frac{\frac{b+6}{2}-2}{5}=\frac{-\frac{a}{2}-1}{-9}$
$\frac{a+20-6}{14}=\frac{b+6-4}{10}=\frac{-a-2}{-18}$
$\frac{a+14}{14}=\frac{a+2}{18}$
$18 a+252=14 a+28$
$4 \mathrm{a}=-224$
$a=-56$
$\frac{b+2}{10}=\frac{a+2}{18}$
$\frac{b+2}{10}=\frac{-54}{18}$
$\frac{\mathrm{b}+2}{10}=-3 \Rightarrow \mathrm{~b}=-32$
$|a+b|=|-56-32|=88$
2. Let f be a twice differentiable function defined on R such that $f(0)=1, f^{\prime}(0)=2$ and $f^{\prime}(x) \neq 0$ for all $\mathrm{x} \in \mathrm{R}$. If $\left|\begin{array}{ll}f(x) & f^{\prime}(x) \\ f^{\prime}(x) & f^{\prime \prime}(x)\end{array}\right|=0$, for all $\mathrm{x} \in \mathrm{R}$ then the value of $f(1)$ lies in the interval:
(1) $(9,12)$
(2) $(6,9)$
$(3)(3,6)$
$(4)(0,3)$

Ans. (2)

Sol. Given $f(x) f "(X)-\left(f^{\prime}(x)\right)^{2}=0$
Let $h(x)=\frac{f(x)}{f^{\prime}(x)}$
$\Rightarrow h^{\prime}(x)=0 \quad \Rightarrow h(x)=k$
$\Rightarrow \frac{f(x)}{f^{\prime}(x)}=k \quad \Rightarrow f(x)=k f^{\prime}(x)$
$\Rightarrow \mathrm{f}(0)=\mathrm{k} \mathrm{f}^{\prime}(0) \quad \Rightarrow 1=\mathrm{k}(2) \Rightarrow \mathrm{k}=\frac{1}{2}$
Now $f(x)=\frac{1}{2} f^{\prime}(x) \Rightarrow \int 2 d x=\int \frac{f^{\prime}(x)}{f(x)} d x$
$\Rightarrow 2 \mathrm{x}=\ln |\mathrm{f}(\mathrm{x})|+\mathrm{C}$
As $\mathrm{f}(0)=1 \Rightarrow \mathrm{C}=0$
$\Rightarrow 2 \mathrm{x}=\ln |\mathrm{f}(\mathrm{X})| \Rightarrow \mathrm{f}(\mathrm{x})= \pm \mathrm{e}^{2 \mathrm{x}}$
As $f(0)=1 \Rightarrow f(x)=e^{2 x} \Rightarrow f(1)=e^{2}$
3. A possible value of $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$ is:
(1) $\frac{1}{2 \sqrt{2}}$
(2) $\frac{1}{\sqrt{7}}$
(3) $\sqrt{7}-1$
(4) $2 \sqrt{2}-1$

Ans. (2)
Sol. $\tan \left(\frac{1}{4} \sin ^{-1} \frac{\sqrt{63}}{8}\right)$
Let $\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)=\theta \quad \sin \theta=\frac{\sqrt{63}}{8}$

$\cos \theta=\frac{1}{8}$
$2 \cos ^{2} \frac{\theta}{2}-1=\frac{1}{8}$
$\cos ^{2} \frac{\theta}{2}=\frac{9}{16}$
$\cos \frac{\theta}{2}=\frac{3}{4}$
$\frac{1-\tan ^{2} \frac{\theta}{4}}{1+\tan ^{2} \frac{\theta}{4}}=\frac{3}{4}$
$\tan \frac{\theta}{4}=\frac{1}{\sqrt{7}}$
4. The probability that two randomly selected subsets of the set $\{1,2,3,4,5\}$ have exactly two elements in their intersection, is:
(1) $\frac{65}{2^{7}}$
(2) $\frac{135}{2^{9}}$
(3) $\frac{65}{2^{8}}$
(4) $\frac{35}{2^{7}}$

Ans. (2)
Sol. Required probability
$=\frac{{ }^{5} \mathrm{C}_{2} \times 3^{3}}{4^{5}}$
$=\frac{10 \times 27}{2^{10}}=\frac{135}{2^{9}}$
5. The vector equation of the plane passing through the intersection of the planes $\overrightarrow{\mathrm{r}} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\overrightarrow{\mathrm{r}} \cdot(\hat{i}-2 \hat{j})=-2$, and the point $(1,0,2)$ is :
(1) $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=\frac{7}{3}$
(2) $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=7$
(3) $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=7$
(4) $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=\frac{7}{3}$

Ans. (2)

Sol. Plane passing through intersection of plane is
$\{\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1\}+\lambda\{\vec{r} \cdot(\hat{i}-2 \hat{j})+2\}=0$
Passes through $\hat{i}+2 \hat{k}$, we get
$(3-1)+\lambda(1+2)=0 \Rightarrow \lambda=-\frac{2}{3}$
Hence, equation of plane is $3\{\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})-1\}-2\{\vec{r} \cdot(\hat{i}-2 \hat{j})+2\}=0$
$\Rightarrow \quad \vec{r} \cdot(\hat{i}+7 \hat{j}+3 \hat{k})=7$
6. If P is a point on the parabola $y=x^{2}+4$ which is closest to the straight line $y=4 x-1$, then the co-ordinates of P are :
(1) $(-2,8)$
(2) $(1,5)$
(3) $(3,13)$
(4) $(2,8)$

Ans. (4)
Sol. $\frac{d y}{d x} I_{p}=4$
$\therefore 2 \mathrm{x}_{1}=4$

$\Rightarrow \mathrm{x}_{1}=2$
\therefore Point will be $(2,8)$
7. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be in arithmetic progression. Let the centroid of the triangle with vertices $(a, c),(2, b)$ and (a, b) be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If α, β are the roots of the equation $a x^{2}+b x+1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is:
(1) $\frac{71}{256}$
(2) $-\frac{69}{256}$
(3) $\frac{69}{256}$
(4) $-\frac{71}{256}$

Ans. (4)
Sol. $2 b=a+c$
$\frac{2 a+2}{3}=\frac{10}{3}$ and $\frac{2 b+c}{3}=\frac{7}{3}$
$\left.a=4, \begin{array}{l}2 b+c=7 \\ 2 b-c=4\end{array}\right\}$, solving
$\mathrm{b}=\frac{11}{4}$
$c=\frac{3}{2}$
\therefore Quadratic Equation is $4 x^{2}+\frac{11}{4} x+1=0$
\therefore The value of $(\alpha+\beta)^{2}-3 \alpha \beta=\frac{121}{256}-\frac{3}{4}=-\frac{71}{256}$
8. The value of the integral, $\int_{1}^{3}\left[x^{2}-2 x-2\right] \mathrm{d} x$, where $[\mathrm{x}]$ denotes the greatest integer less than or equal to x, is:
(1) -4
(2) -5
(3) $-\sqrt{2}-\sqrt{3}-1$
(4) $-\sqrt{2}-\sqrt{3}+1$

Ans. (3)
Sol. $\quad I=\int_{1}^{3}-3 d x+\int_{1}^{3}\left[(x-1)^{2}\right] d x$
Putx-1 $=\mathrm{t} ; \mathrm{dx}=\mathrm{dt}$
$I=(-6)+\int_{0}^{2}\left[t^{2}\right] d t$
$1=-6+\int_{0}^{1} 0 d t+\int_{1}^{\sqrt{2}} 1 d t+\int_{\sqrt{2}}^{\sqrt{3}} 2 d t+\int_{\sqrt{3}}^{2} 3 d t$
$1=-6+(\sqrt{2}-1)+2 \sqrt{3}-2 \sqrt{2}+6-3 \sqrt{3}$
$\mathrm{I}=-1-\sqrt{2}-\sqrt{3}$
9. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as
$f(x)= \begin{cases}-55 x, & \text { if } x<-5 \\ 2 x^{3}-3 x^{2}-120 x, & \text { if }-5 \leq x \leq 4 \\ 2 x^{3}-3 x^{2}-36 x-336, & \text { if } x>4\end{cases}$
Let $A=\{x \in R: f$ is increasing $\}$. Then A is equal to :
(1) $(-5,-4) \cup(4, \infty)$
(2) $(-5, \infty)$
(3) $(-\infty,-5) \cup(4, \infty)$
(4) $(-\infty,-5) \cup(-4, \infty)$

Ans. (1)

Sol. $f(x)=\left\{\begin{array}{ccc}-55 ; & x<-5 \\ 6\left(x^{2}-x-20\right) & ; & -5<x<4 \\ 6\left(x^{2}-x-6\right) ; & x>4\end{array}\right.$
$f(x)=\left\{\begin{array}{ccc}-55 & ; & x<-5 \\ 6(x-5)(x+4) & ; & -5<x<4 \\ 6(x-3)(x+2) & ; & x>4\end{array}\right.$
Hence, $f(x)$ is monotonically increasing in interval $(-5,-4) \cup(4, \infty)$
10. If the curve $y=a x^{2}+b x+c, x \in R$, passes through the point (1,2) and the tangent line to this curve at origin is $y=x$, then the possible values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are:
(1). $a=1, b=1, c=0$
(2) $a=-1, b=1, c=1$
(3) $a=1, b=0, c=1$
(4) $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}, \mathrm{c}=1$

Ans. (1)
Sol. $\quad 2=a+b+c$.
$\frac{d y}{d x}=2 a x+\left.b \Rightarrow \frac{d y}{d x}\right|_{(0,0)}=1$
$\Rightarrow \mathrm{b}=1 \Rightarrow \mathrm{a}+\mathrm{c}=1$
$(0,0)$ lie on curve
$\therefore c=0, a=1$
11. The negation of the statement
$\sim p \wedge(p \vee q)$ is :
(1) $\sim p \wedge q$
(2) $p \wedge \sim q$
(3) $\sim p \vee q$
(4) $p \vee \sim q$

Ans. (4)
Sol.

p	q	$\sim \mathrm{p}$	$\mathrm{p} \vee \mathrm{q}$	$(\sim \mathrm{p}) \wedge(\mathrm{p} \vee \mathrm{q})$	$\sim \mathrm{q}$	$\mathrm{p} \vee \sim \mathrm{q}$
T	T	F	T	F	F	T
T	F	F	T	F	T	T
F	T	T	T	T	F	F
F	F	T	F	F	T	T

$\therefore \sim p \wedge(p \vee q) \equiv \mathrm{p} \vee \sim \mathrm{q}$
12. For the system of linear equations:
$x-2 y=1, x-y+k z=-2, k y+4 z=6, k \in \mathbf{R}$
consider the following statements:
(A) The system has unique solution if $k \neq 2, k \neq-2$.
(B) The system has unique solution if $k=-2$.
(C) The system has unique solution if $k=2$.
(D) The system has no-solution if $k=2$.
(E) The system has infinite number of solutions if $k \neq-2$.

Which of the following statements are correct?
(1) (B) and (E) only
(2)(C) and (D) only
(3) (A) and (D) only
(4) (A) and (E) only

Ans. (3)
Sol. $\quad x-2 y+0 . z=1$
$x-y+k z=-2$
$0 . x+k y+4 z=6$
$\Delta=\left|\begin{array}{ccc}1 & -2 & 0 \\ 1 & -1 & k \\ 0 & k & 4\end{array}\right|=4-k^{2}$
For unique solution $\quad 4-k^{2} \neq 0$

$$
\mathrm{k} \neq \pm 2
$$

For $\mathrm{k}=2$
$x-2 y+0 . z=1$
$x-y+2 z=-2$
$0 . x+2 y+4 z=6$
$\Delta \mathrm{x}=\left|\begin{array}{ccc}1 & -2 & 0 \\ -2 & -1 & 2 \\ 6 & 2 & 4\end{array}\right|=(-8)+2[-20]$
$\Delta x=-48 \neq 0$
For $k=2 \Delta x \neq 0$
For $\mathrm{K}=2$; The system has no solution
13. For which of the following curves, the line $x+\sqrt{3} y=2 \sqrt{3}$ is the tangent at the point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$?
(1) $x^{2}+9 y^{2}=9$
(2) $2 x^{2}-18 y^{2}=9$
(3) $y^{2}=\frac{1}{6 \sqrt{3}} x$
(4) $x^{2}+y^{2}=7$

Ans. (1)
Sol. Tangent to $x^{2}+9 y^{2}=9$ at point $\left(\frac{3 \sqrt{3}}{2}, \frac{1}{2}\right)$ is $x\left|\frac{3 \sqrt{3}}{2}\right|+9 y\left(\frac{1}{2}\right)=9$
$3 \sqrt{3} x+9 y=18 \Rightarrow x+\sqrt{3} y=2 \sqrt{3}$
\Rightarrow option (1) is true
14. The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 20 seconds at the speed of $432 \mathrm{~km} /$ hour, the angle of elevation changes to 30°. If the jet plane is flying at a constant height, then its height is:
(1) $1200 \sqrt{3} \mathrm{~m}$
(2) $1800 \sqrt{3} \mathrm{~m}$
(3) $3600 \sqrt{3} \mathrm{~m}$
(4) $2400 \sqrt{3} \mathrm{~m}$

Ans. (1)
Sol.

$v=432 \times \frac{1000}{60 \times 60} \mathrm{~m} / \mathrm{sec}=120 \mathrm{~m} / \mathrm{sec}$
Distance $A B=v \times 20=2400$ meter
In \triangle PAC
$\tan 60^{\circ}=\frac{h}{P C} \Rightarrow P C=\frac{h}{\sqrt{3}}$
In $\triangle P B D$
$\tan 30^{\circ}=\frac{\mathrm{h}}{\mathrm{PD}} \Rightarrow \mathrm{PD}=\sqrt{3} \mathrm{~h}$
$P D=P C+C D$
$\sqrt{3} h=\frac{h}{\sqrt{3}}+2400 \Rightarrow \frac{2 h}{\sqrt{3}}=2400$
$h=1200 \sqrt{3}$ meter
15. For the statements p and q , consider the following compound statements:
(a) $(\sim q \wedge(p \rightarrow q)) \rightarrow \sim p$
(b) $((\mathrm{p} \vee \mathrm{q})) \wedge \sim \mathrm{P}) \rightarrow \mathrm{P}$

Then which of the following statements is correct?
(1) (a) is a tautology but not (b)
(2) (a) and (b) both are not tautologies.
(3) (a) and (b) both are tautologies.
(4) (b) is a tautology but not (a).

Ans.

Sol. (a)

p	q	$\sim \mathrm{q}$	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{q} \wedge(\mathrm{p} \rightarrow \mathrm{q})$	$\sim \mathrm{p}$	$(\sim \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \sim \mathrm{p}$
T	T	F	T	F	F	T
T	F	T	F	F	F	T
F	T	F	T	F	T	T
F	F	T	T	T	T	T

(a) is tautologies
(b)

p	q	$\mathrm{p} \vee \mathrm{q}$	$\sim \mathrm{p}$	$(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p}$	$((\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{p}) \rightarrow \mathrm{q}$
T	T	T	F	F	T
T	F	T	F	F	T
F	T	T	T	T	T
F	F	F	T	F	T

(b) is tautologies
$\therefore \mathrm{a} \& \mathrm{~b}$ are both tautologies.
16. Let A and B be 3×3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $\left(A^{2} B^{2}-B^{2} A^{2}\right) X=O$, where X is a 3×1 column matrix of unknown variables and O is a 3×1 null matrix, has :
(1) a unique solution
(2) exactly two solutions
(3) infinitely many solutions
(4) no solution

Ans. (3)

Sol. $A^{\top}=A, B^{\top}=-B$
Let $A^{2} B^{2}-B^{2} A^{2}=P$
$P^{\top}=\left(A^{2} B^{2}-B^{2} A^{2}\right)^{\top}=\left(A^{2} B^{2}\right)^{\top}-\left(B^{2} A^{2}\right)^{\top}$
$=\left(B^{2}\right)^{\top}\left(A^{2}\right)^{\top}-\left(A^{2}\right)^{\top}\left(B^{2}\right)^{\top}$
$=B^{2} A^{2}-A^{2} B^{2}$
$\Rightarrow P$ is skew-symmetric matrix

$$
\begin{align*}
& {\left[\begin{array}{ccc}
0 & \mathrm{a} & \mathrm{~b} \\
-\mathrm{a} & 0 & \mathrm{c} \\
-\mathrm{b} & -\mathrm{c} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& \therefore \quad \begin{array}{l}
\mathrm{ay}+\mathrm{bz}=0 \\
-\mathrm{ax}+\mathrm{cz}=0 \\
-\mathrm{bx}-\mathrm{cy}
\end{array}=0 \tag{1}
\end{align*}
$$

From equation 1,2,3

$$
\Delta=0 \& \Delta_{1}=\Delta_{2}=\Delta_{3}=0
$$

\therefore equation have infinite number of solution
17. If $n \geq 2$ is a positive integer, then the sum of the series ${ }^{n+1} \mathrm{C}_{2}+2\left({ }^{2} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2}+\ldots .+{ }^{\mathrm{n}} \mathrm{C}_{2}\right)$ is :
(1) $\frac{n(n+1)^{2}(n+2)}{12}$
(2) $\frac{n(n-1)(2 n+1)}{6}$
(3) $\frac{n(n+1)(2 n+1)}{6}$
(4) $\frac{n(2 n+1)(3 n+1)}{6}$

Ans. (3)
Sol. ${ }^{2} \mathrm{C}_{2}={ }^{3} \mathrm{C}_{3}$
$\mathrm{S}={ }^{3} \mathrm{C}_{3}+{ }^{3} \mathrm{C}_{2}+\ldots \ldots+{ }^{n} \mathrm{C}_{2}={ }^{\mathrm{n}+1} \mathrm{C}_{3}$
$\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
$\therefore{ }^{n+1} C_{2}+{ }^{n+1} C_{3}+{ }^{n+1} C_{3}={ }^{n+2} C_{3}+{ }^{n+1} C_{3}$
$=\frac{(n+1)!}{3!(n-1)!}+\frac{(n+1)!}{3!(n-2)!}$
$=\frac{(n+2)(n+1) n}{6}+\frac{(n+1)(n)(n-1)}{6}=\frac{n(n+1)(2 n+1)}{6}$
18. If a curve $y=f(x)$ passes through the point (1,2) and satisfies $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\mathrm{b} x^{4}$, then for what value of $\mathrm{b}, \int_{1}^{2} f(x) \mathrm{d} x=\frac{62}{5}$?
(1) 5
(2) $\frac{62}{5}$
(3) $\frac{31}{5}$
(4) 10

Ans. (4)
Sol. $\frac{d y}{d x}+\frac{y}{x}=b x^{3}$. I.F. $=e^{\int \frac{d x}{x}}=x$
$\therefore \mathrm{yx}=\int \mathrm{bx} \mathrm{x}^{4} \mathrm{dx}=\frac{\mathrm{bx}}{5}+\mathrm{C}$
Passes through (1,2), we get
$2=\frac{b}{5}+C$
Also, $\int_{1}^{2}\left(\frac{b x^{4}}{5}+\frac{c}{x}\right) d x=\frac{62}{5}$
$\Rightarrow \frac{\mathrm{b}}{25} \times 32+\mathrm{Cln} 2-\frac{\mathrm{b}}{25}=\frac{62}{5} \Rightarrow \mathrm{C}=0 \& \mathrm{~b}=10$
19. The area of the region : $R=\left\{(x, y): 5 x^{2} \leq y \leq 2 x^{2}+9\right\}$ is:
(1) $9 \sqrt{3}$ square units
(2) $12 \sqrt{3}$ square units (3) $11 \sqrt{3}$
square units (4) $6 \sqrt{3}$ square units

Ans. (2)

Sol.

Required area
$=2 \int_{0}^{\sqrt{3}}\left(2 x^{2}+9-5 x^{2}\right) d x$
$=2 \int_{0}^{\sqrt{3}}\left(9-3 x^{2}\right) d x$
$=2\left|9 x-x^{3}\right|_{0}^{\sqrt{3}}=12 \sqrt{3}$
20. Let $f(x)$ be a differentiable function defined on $[0,2]$ such that $f^{\prime}(x)=f^{\prime}(2-x)$ for all $x \in(0,2), f(0)=1$ and $f(2)=\mathrm{e}^{2}$. Then the value of $\int_{0}^{2} f(x) \mathrm{d} x$ is:
(1) $1+e^{2}$
(2) $1-e^{2}$
(3) $2\left(1-e^{2}\right)$
(4) $2\left(1+e^{2}\right)$

Ans. (1)
Sol. $f^{\prime}(x)=f^{\prime}(2-x)$
On integrating both side $f(x)=-f(2-x)+c$
put $x=0$
$f(0)+f(2)=c \quad \Rightarrow c=1+e^{2}$
$\Rightarrow \mathrm{f}(\mathrm{x})+\mathrm{f}(2-\mathrm{x})=1+\mathrm{e}^{2}$
$I=\int_{0}^{2} f(x) d x=\int_{0}^{1}\{f(x)+f(2-x)\} d x=\left(1+e^{2}\right)$

Section B

1. The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is \qquad -.

Ans. 2
Sol. $x \geq 5$
$(x+1)^{2}+(x-5)=\frac{27}{4}$
$\Rightarrow x^{2}+3 x-4=\frac{27}{4}$
$\Rightarrow \mathrm{x}^{2}+3 \mathrm{x}-\frac{43}{4}=0$
$\Rightarrow 4 \mathrm{x}^{2}+12 \mathrm{x}-43=0$
$x=\frac{-12 \pm \sqrt{144+688}}{8}$
$x=\frac{-12 \pm \sqrt{832}}{8}=\frac{-12 \pm 28.8}{8}$
$=\frac{-3 \pm 7.2}{2}$
$=\frac{-3+7.2}{2}, \frac{-3-7.2}{2}$ (Therefore no solution)
For $\mathrm{x} \leq 5$
$(x+1)^{2}-(x-5)=\frac{27}{4}$
$x^{2}+x+6-\frac{27}{4}=0$
$4 x^{2}+4 x-3=0$
$x=\frac{-4 \pm \sqrt{16+48}}{8}$
$x=\frac{-4 \pm 8}{8} \Rightarrow x=-\frac{12}{8}, \frac{4}{8}$
$\therefore 2$ Real Root's
2. The students $S_{1}, S_{2}, \ldots, S_{10}$ are to be divided into 3 groups A, B and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities of forming such groups is \qquad _.

Ans. 31650
Sol.
$C \rightarrow 1 \quad 9\left[_{B}^{A}\right.$
$C \rightarrow 2$
$8\left[\begin{array}{l}A \\ B\end{array}\right.$
$\mathrm{C} \rightarrow 3 \quad 7\left[\begin{array}{c}\mathrm{A} \\ \mathrm{B}\end{array}\right.$
$={ }^{10} \mathrm{C}_{1}\left[2^{9}-2\right]+{ }^{10} \mathrm{C}_{2}\left[2^{8}-2\right]+{ }^{10} \mathrm{C}_{3}\left[2^{7}-2\right]$
$=2^{7}\left[{ }^{10} \mathrm{C}_{1} \times 4+{ }^{10} \mathrm{C}_{2} \times 2+{ }^{10} \mathrm{C}_{3}\right]-20-90-240$
$=128[40+90+120]-350$
$=(128 \times 250)-350$
$=10[3165]=31650$
3. If $a+\alpha=1, b+\beta=2$ and $a f(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0$, then the value of the expression $\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}$ is

Ans. 2
Sol. $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}$
$x \rightarrow \frac{1}{x}$
$\operatorname{af}\left(\frac{1}{x}\right)+a f(x)=\frac{b}{x}+\beta x$
(i) $+(\mathrm{ii})$
$(a+\alpha)\left[f(x)+f\left(\frac{1}{x}\right)\right]=\left(x+\frac{1}{x}\right)(b+\beta)$
$\frac{f(x)+f\left(\frac{1}{x}\right)}{x+\frac{1}{x}}=\frac{2}{1}=2$
4. If the variance of 10 natural numbers $1,1,1, \ldots, 1, k$ is less than 10 , then the maximum possible value of k is \qquad -

Ans. 11

Sol. $\sigma^{2}=\frac{\Sigma x^{2}}{n}-\left(\frac{\Sigma \mathrm{x}}{\mathrm{n}}\right)^{2}$
$\sigma^{2}=\frac{\left(9+\mathrm{k}^{2}\right)}{10}-\left(\frac{9+\mathrm{k}}{10}\right)^{2}<10$
$\left(90+k^{2}\right) 10-\left(81+k^{2}+8 k\right)<1000$
$90+10 k^{2}-k^{2}-18 k-81<1000$
$9 k^{2}-18 k+9<1000$
$(k-1)^{2}<\frac{1000}{9} \Rightarrow k-1<\frac{10 \sqrt{10}}{3}$
$k<\frac{10 \sqrt{10}}{3}+1$
Maximum integral value of $k=11$
5. Let λ be an integer. If the shortest distance between the lines $x-\lambda=2 y-1=-2 z$ and $x=y+2 \lambda=z-\lambda$ is $\frac{\sqrt{7}}{2 \sqrt{2}}$, then the value of $|\lambda|$ is

Ans. 1
Sol. $\frac{x-\lambda}{1}=\frac{y-\frac{1}{2}}{\frac{1}{2}}=\frac{z}{-\frac{1}{2}}$
$\frac{x-\lambda}{2}=\frac{y-\frac{1}{2}}{1}=\frac{2}{-1}$
Point on line $=\left(\lambda, \frac{1}{2}, 0\right)$
$\frac{\mathrm{x}}{1}=\frac{\mathrm{y}+2 \lambda}{1}=\frac{\mathrm{z}-\lambda}{1}$
Point on line $=(0,-2 \lambda, \lambda)$
Distance between skew lines $\left.=\frac{\left[\vec{a}_{2}-\overrightarrow{\mathrm{a}}_{1} \overrightarrow{\mathrm{~b}}_{1} \overrightarrow{\mathrm{~b}}_{2}\right.}{}\right]$

$$
\left.\begin{aligned}
& \left|\begin{array}{ccc}
\lambda & \frac{1}{2}+2 \lambda & -\lambda \mid \\
2 & 1 & -1 \\
1 & 1 & 1
\end{array}\right| \\
& \left|\begin{array}{|cc|}
\hat{\mathrm{i}} & \hat{\mathrm{j}} \\
2 & 1 \\
\mathrm{k} \\
1 & 1
\end{array}\right| \\
& \hline
\end{aligned} \right\rvert\,
$$

6. Let $i=\sqrt{-1}$. If $\frac{(-1+i \sqrt{3})^{21}}{(1-i)^{24}}+\frac{(1+i \sqrt{3})^{21}}{(1+i)^{24}}=k$, and $\mathrm{n}=[|k|]$ be the greatest integral part of $|\mathrm{k}|$. Then $\sum_{j=0}^{n+5}(j+5)^{2}-\sum_{j=0}^{n+5}(j+5)$ is equal to \qquad .

Ans. 310
Sol. $\frac{\left(2 e^{i \frac{2 \pi}{3}}\right)^{21}}{\left(\sqrt{2} e^{-i \frac{\pi}{4}}\right)^{24}}+\frac{\left(2 e^{i \frac{\pi}{3}}\right)^{21}}{\left(\sqrt{2} e^{i \frac{\pi}{4}}\right)^{24}}$
$\Rightarrow \frac{2^{21} \cdot \mathrm{e}^{\mathrm{i} 14 \pi}}{2^{12} \cdot \mathrm{e}^{-\mathrm{i} 6 \pi}}+\frac{2^{21}\left(\mathrm{e}^{\mathrm{i} 7 \pi}\right)}{2^{12}\left(\mathrm{e}^{\mathrm{i} 6 \pi}\right)}$
$\Rightarrow 2^{9} \mathrm{e}^{\mathrm{i}(20 \pi)}+2^{9} \mathrm{e}^{\mathrm{i} \pi}$
$\Rightarrow 2^{9}+2^{9}(-1)=0$
$\mathrm{n}=0$
$\sum_{j=0}^{5}(j+5)^{2}-\sum_{j=0}^{5}(j+5)$
$\Rightarrow\left[5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}\right]-[5+6+7+8+9+10]$
$\Rightarrow\left[\left(1^{2}+2^{2}+\ldots .+10^{2}\right)-\left(1^{2}+2^{2}+3^{2}+4^{2}\right)\right]-[(1+2+3+\ldots . .+10)-(1+2+3+4)]$
$\Rightarrow(385-30)-[55-10]$
$\Rightarrow 355-45 \Rightarrow 310$ ans.
7. Let a point P be such that its distance from the point $(5,0)$ is thrice the distance of P from the point $(-5,0)$. If the locus of the point P is a circle of radius r, then $4 r^{2}$ is equal to

Ans. 56.25
Sol. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$
Given
$\mathrm{PA}=3 \mathrm{~PB}$
$\mathrm{PA}^{2}=9 \mathrm{~PB}^{2}$
$\Rightarrow(\mathrm{h}-5)^{2}+\mathrm{k}^{2}=9\left[(\mathrm{~h}+5)^{2}+\mathrm{k}^{2}\right]$
$\Rightarrow 8 \mathrm{~h}^{2}+8 \mathrm{k}^{2}+100 \mathrm{~h}+200=0$
\therefore Locus
$x^{2}+y^{2}+\left(\frac{25}{2}\right) x+25=0$
$\therefore \mathrm{c} \equiv\left(\frac{-25}{4}, 0\right)$
$\therefore r^{2}=\left(\frac{-25}{4}\right)^{2}-25$
$=\frac{625}{16}-25$
$=\frac{225}{16}$
$\therefore 4 \mathrm{r}^{2}=4 \times \frac{225}{16}=\frac{225}{4}=56.25$
8. For integers n and r , let $\binom{n}{r}= \begin{cases}{ }^{n} C_{r}, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{cases}$

The maximum value of k for which the sum
$\sum_{i=0}^{k}\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i}$ exists, is equal to

Ans. 12
Sol. $\quad(1+x){ }^{10}={ }^{10} C_{0}+{ }^{10} C_{1} x+{ }^{10} C_{2} x^{2}+\ldots . .+{ }^{10} C_{10} x^{10}$
$(1+x){ }^{15}={ }^{15} C_{0}+{ }^{15} C_{1} x+\ldots .{ }^{15} C_{k-1} \mathrm{X}^{k-1}+{ }^{15} \mathrm{C}_{\mathrm{k}} \mathrm{x}{ }^{k}+{ }^{15} \mathrm{C}_{\mathrm{k}+1} \mathrm{X}{ }^{k+1}+\ldots . .{ }^{15} \mathrm{C}_{15} \mathrm{X}{ }^{15}$
$\sum_{i=0}^{k}\left(10 C_{i}\right)\left(15 C_{k-i}\right)={ }^{10} C_{0} \cdot{ }^{15} C_{k}+{ }^{10} C_{1} \cdot{ }^{15} C_{k-1}+\ldots .+{ }^{10} C_{k} \cdot{ }^{15} C_{0}$
Coefficient of x_{k} in $(1+x)^{25}$
$={ }^{25} \mathrm{C}_{\mathrm{k}}$
$\sum_{\mathrm{i}=0}^{\mathrm{k}+1}\left({ }^{12} \mathrm{C}_{\mathrm{i}}\right)\left({ }^{13} \mathrm{C}_{\mathrm{k}+1-\mathrm{i}}\right)={ }^{12} \mathrm{C}_{0} \cdot{ }^{13} \mathrm{C}_{\mathrm{k}+1}+{ }^{12} \mathrm{C}_{1} \cdot{ }^{13} \mathrm{C}_{\mathrm{k}}+\ldots . .+{ }^{12} \mathrm{C}_{\mathrm{k}+1} \cdot{ }^{13} \mathrm{C}_{0}$
Coefficient of x^{k+1} in $(1+x)^{25}$
$={ }^{25} \mathrm{C}_{\mathrm{k}+1}$
${ }^{25} C_{k}+{ }^{25} C_{k+1}={ }^{26} C_{k+1}$
For maximum value
$k+1=13$
$\mathrm{K}=12$
9. The sum of first four terms of a geometric progression (G.P.) is $\frac{65}{12}$ and the sum of their respective reciprocals is $\frac{65}{18}$. If the product of first three terms of the G.P. is 1 , and the third term is α, then 2α is

Ans. 3
Sol. $a, a r, a r^{2}, a r^{3}$
$a+a r+a r^{2}+a r^{3}=\frac{65}{12}$
$\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{ar}}+\frac{1}{\mathrm{ar}^{2}}+\frac{1}{\mathrm{ar}^{3}}=\frac{65}{18}$
$\frac{1}{a}\left(\frac{r^{3}+r^{2}+r+1}{r^{3}}\right)=\frac{65}{18}$
$\frac{(i)}{(i i)}, a^{2} r^{3}=\frac{18}{12}=\frac{3}{2}$
$a^{3} r^{3}=1 \Rightarrow a\left(\frac{3}{2}\right)=1 \Rightarrow a=\frac{2}{3}$
$\frac{4}{9} r^{3}=\frac{3}{2} \Rightarrow r^{3}=\frac{3^{3}}{2^{3}} \Rightarrow r=\frac{3}{2}$
$\alpha=a r^{2}=\frac{2}{3} \cdot\left(\frac{3}{2}\right)^{2}=\frac{3}{2}$
$2 \alpha=3$
10. If the area of the triangle formed by the positive x-axis, the normal and the tangent to the circle $(x-2)^{2}+(y-3)^{2}=25$ at the point $(5,7)$ is A, then 24 A is equal to \qquad -.

Ans. 1225

Sol.

Equation of normal at P
$(y-7)=\left(\frac{7-3}{5-2}\right)(x-5)$
$3 y-21=4 x-20$
$\Rightarrow 4 x-3 y+1=0$
$\Rightarrow \quad M\left(-\frac{1}{4}, 0\right)$
Equation of tangent at P

$$
\begin{align*}
& (y-7)=-\frac{3}{4}(x-5) \\
& 4 y-28=-3 x+15 \\
& \Rightarrow 3 x+4 y=43 \tag{ii}\\
& \Rightarrow \quad N\left(\frac{43}{3}, 0\right)
\end{align*}
$$

Hence $\operatorname{ar}(\triangle \mathrm{PMN})=\frac{1}{2} \times \mathrm{MN} \times 7$
$\lambda=\frac{1}{2} \times \frac{175}{12} \times 7$
$\Rightarrow 24 \lambda=1225$

