25 ${ }^{\text {th }}$ Feb. 2021 | Shift - 1 PHYSICS

Section - A

1. A $5 V$ battery is connected across the points X and Y. Assume D_{1} and D_{2} to be normal silicon diodes. Find the current supplied by the battery if the +ve terminal of the battery is connected to point X .

(1) $\sim 0.86 \mathrm{~A}$
(2) $\sim 0.5 \mathrm{~A}$
(3) ~ 0.43 A
(4) ~ 1.5 A

Sol. 3
Since silicon diode is used so 0.7 Volt is drop across it, only D_{1} will conduct so current through cell $\mathrm{I}=\frac{5-0.7}{10}=0.43 \mathrm{~A}$
2. A solid sphere of radius R gravitationally attracts a particle placed at $3 R$ from its centre with a force F_{1}. Now a spherical cavity of radius $\left(\frac{R}{2}\right)$ is made in the sphere (as shown in figure) and the force becomes F_{2}. The value of $F_{1}: F_{2}$ is :

(1)41:50
(2) $36: 25$
(3) $50: 41$
(4) $25: 36$

Sol. 1
$\mathrm{g}_{1}=\frac{\mathrm{GM}}{(3 \mathrm{R})^{2}}=\frac{\mathrm{GM}}{9 \mathrm{R}^{2}}$
$g_{2}=\frac{G M}{9 R^{2}}-\frac{G\left(\frac{M}{8}\right)}{\left(3 R-\frac{R}{2}\right)^{2}}$
$=\frac{\mathrm{GM}}{9 \mathrm{R}^{2}}-\frac{\mathrm{GM}}{\mathrm{R}^{2} 50}=\frac{41}{9 \times 50} \frac{\mathrm{GM}}{\mathrm{R}^{2}}$
$\frac{g_{1}}{g_{2}}=\frac{41}{50}$
Force $\Rightarrow \frac{F_{1}}{F_{2}}=\frac{\mathrm{mg}_{1}}{\mathrm{mg}_{2}}=\frac{41}{50}$
3. A student is performing the experiment of resonance column. The diameter of the column tube is 6 cm . The frequency of the tuning fork is 504 Hz . Speed of the sound at the given temperature is $336 \mathrm{~m} / \mathrm{s}$. The zero of the metre scale coincides with the top end of the resonance column tube. The reading of the water level in the column when the first resonance occurs is :
(1) 13 cm
(2) 14.8 cm
(3) 16.6 cm
(4) 18.4 cm

Sol. 2
$\lambda=\frac{v}{f}=\frac{336}{504}=66.66 \mathrm{~cm}$
$\frac{\lambda}{4}=1+e=1+0.3 d$
$=1+1.8$
$16.66=\mathrm{I}+1.8 \mathrm{~cm}$
$\mathrm{I}=14.86 \mathrm{~cm}$
4. A diatomic gas, having $C_{p}=\frac{7}{2} R$ and $C_{v}=\frac{5}{2} R$, is heated at constant pressure.

The ratio $\mathrm{dU}: \mathrm{dQ}: \mathrm{dW}$
(1) $3: 7: 2$
(2) $5: 7: 2$
(3) $5: 7: 3$
(4) $3: 5: 2$

Sol. 2
$C_{p}=\frac{7}{2} R$
$C_{v}=\frac{5}{2} R$
$\mathrm{dU}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$\mathrm{dQ}=\mathrm{nC}_{\mathrm{p}} \mathrm{dT}$
$\mathrm{dW}=\mathrm{nRdT}$
$d U$: dQ : dW
$C_{v}: C_{p}: R$
$\frac{5}{2} R: \frac{7}{2} R: R$
5:7:2
5. Given below are two statements :

Statement I : A speech signal of 2 kHz is used to modulate a carrier signal of 1 MHz . The bandwidth requirement for the signal is 4 kHz .
Statement II : The side band frequencies are 1002 kHz and 998 kHz .
In the light of the above statements, choose the correct answer from the options given below :
(1) Both statement I and statement II are false
(2) Statement I is false but statement II is true
(3) Statement I is true but statement II is false
(4) Both statement I and statement II are true

Sol. 4

Side band $=\left(f_{c}-f_{m}\right)$ to $\left(f_{c}+f_{m}\right)$
$=(1000-2) \mathrm{KHz}$ to $(1000+2) \mathrm{KHz}$
$=998 \mathrm{KHz}$ to 1002 kHz
Band width $=2 f_{m}$
$=2 \times 2 \mathrm{KHz}$
$=4 \mathrm{KHz}$
Both statements are true
6. The current (i) at time $t=0$ and $t=\infty$ respectively for the given circuit is :

(1) $\frac{18 E}{55}, \frac{5 E}{18}$
(2) $\frac{5 \mathrm{E}}{18}, \frac{18 \mathrm{E}}{55}$
(3) $\frac{5 \mathrm{E}}{18}, \frac{10 \mathrm{E}}{33}$
(4) $\frac{10 E}{33}, \frac{5 E}{18}$

Sol. 3

at $t=0$, inductor is removed, so circuit will look like this
at $\mathrm{t}=0$

$R_{e q}=\frac{6 \times 9}{6+9}=\frac{54}{15}$
$I(t=0)=\frac{E \times 15}{54}=\frac{5 E}{18}$
at $\mathrm{t}=\infty$, inductor is replaced by plane wire, so circuit will look like this
at $\mathrm{t}=\infty$

$I(t=\infty)=\frac{E}{\frac{5}{2}+\frac{4}{5}}=\frac{10 E}{33}$
Now,

$\mathrm{R}_{\mathrm{eq}}=\frac{1 \times 4}{1+4}+\frac{5 \times 5}{5+5}$
$=\frac{4}{5}+\frac{5}{2}=\frac{8+25}{10}=\frac{33}{10}$
$\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}_{\text {eq }}}=\frac{10 \mathrm{E}}{33}$
7. Two satellites A and B of masses 200 kg and 400 kg are revolving round the earth at height of 600 km and 1600 km respectively.
If T_{A} and T_{B} are the time periods of A and B respectively then the value of $T_{B}-T_{A}$:

[Given : radius of earth $=6400 \mathrm{~km}$, mass of earth $=6 \times 10^{24} \mathrm{~kg}$]
(1) $4.24 \times 10^{2} \mathrm{~s}$
(2) $3.33 \times 10^{2} \mathrm{~s}$
(3) $1.33 \times 10^{3} \mathrm{~s}$
(4) $4.24 \times 10^{3} \mathrm{~s}$

Sol. 3

$V=\sqrt{\frac{G M_{e}}{r}}$
$T=\frac{2 \pi r}{\sqrt{\frac{G M_{e}}{r}}}=2 \pi r \sqrt{\frac{r}{G M_{e}}}$

$T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M_{e}}}=\sqrt{\frac{4 \pi^{2} r^{3}}{G M_{e}}}$
$\mathrm{T}_{2}-\mathrm{T}_{1}=\sqrt{\frac{4 \pi^{2}\left(8000 \times 10^{3}\right)^{3}}{\mathrm{G} \times 6 \times 10^{24}}}-\sqrt{\frac{4 \pi^{2}\left(7000 \times 10^{3}\right)^{3}}{G \times 6 \times 10^{24}}}$
$\cong 1.33 \times 10^{3} \mathrm{~s}$
8. An engine of a train, moving with uniform acceleration, passes the signal post with velocity u and the last compartment with velocity v . The velocity with which middle point of the train passes the signal post is :
(1) $\sqrt{\frac{v^{2}-u^{2}}{2}}$
(2) $\frac{v-u}{2}$
(3) $\sqrt{\frac{v^{2}+u^{2}}{2}}$
(4) $\frac{u+v}{2}$

Sol. 3

$\mathrm{a}=$ uniform acceleration
$u=$ velocity of first compartment
$v=$ velocity of last compartment
I = length of train
$v^{2}=u^{2}+2$ as ($3^{\text {rd }}$ equation of motion)
$v^{2}=u^{2}+2 a l$
$\mathrm{v}_{\text {middle }}^{2}=\mathrm{u}^{2}+2 \mathrm{a} \frac{1}{2}$
$\therefore \mathrm{v}_{\text {middle }}=\mathrm{u}^{2}+\mathrm{al}$
from equation (1) and (2)
$\mathrm{v}_{\text {middle }}^{2}=\mathrm{u}^{2}+\left(\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2}\right)$
$=\frac{\mathrm{v}^{2}+\mathrm{u}^{2}}{2}$
$\therefore \mathrm{v}_{\text {middle }}=\sqrt{\frac{\mathrm{v}^{2}+\mathrm{u}^{2}}{2}}$
9. A proton, a deuteron and an α particle are moving with same momentum in a uniform magnetic field. The ratio of magnetic forces action on them is \qquad and their speed is \qquad , in the ratio.
(1) $2: 1: 1$ and $4: 2: 1$
(2) $1: 2: 4$ and $2: 1: 1$
(3) $1: 2: 4$ and $1: 1: 2$
(4) $4: 2: 1$ and $2: 1: 1$

Sol. 1

As $v=\frac{p}{m} \& F=q v B$
$\therefore \mathrm{F}=\frac{\mathrm{qP}}{\mathrm{m}} \mathrm{B}$
$F_{1}=\frac{q p B}{m}, v_{1}=\frac{p}{m}$
$F_{2}=\frac{q p B}{2 m}, v_{2}=\frac{p}{2 m}$
$F_{3}=\frac{2 q p B}{4 m}, v_{3}=\frac{p}{4 m}$
$F_{1}: F_{2}: F_{3} \quad \& V_{1}: V_{2}: V_{3}$
$1: \frac{1}{2}: \frac{1}{2}$
\& $1: \frac{1}{2}: \frac{1}{4}$
2:1:1
\& $4: 2: 1$
10. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A: When a rod lying freely is heated, no thermal stress is developed in it.
Reason R : On heating, the length of the rod increases.
In the light of the above statements, choose the corect answer from the options given below :
(1) A is true but R is false
(2) Both A and R are true and R is the correct explanation of A
(3) Both A and R are true but R is NOT the correct explanation of A
(4) A is false but R is true

Sol. 3

When a rod is free and it is heated then there is no thermal stress produced in it. The rod will expand due to increase in temperature.
so both a \& R are true.
11. In an octagon $A B C D E F G H$ of equal side, what is the sum of

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}+\overrightarrow{\mathrm{AG}}+\overrightarrow{\mathrm{AH}}
$$

If, $\overrightarrow{\mathrm{AO}}=2 \hat{i}+3 \hat{j}-4 \hat{k}$

(1) $16 \hat{i}+24 \hat{j}-32 \hat{k}$
(2) $-16 \hat{i}-24 \hat{j}-32 \hat{k}$
(3) $-16 \hat{i}-24 \hat{j}+32 \hat{k}$
(4) $-16 \hat{i}+24 \hat{j}+32 \hat{k}$

Sol. 1

$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{AB}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{AC}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{AD}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{AE}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OF}}=\overrightarrow{\mathrm{AF}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OG}}=\overrightarrow{\mathrm{AG}}$
$\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OH}}=\overrightarrow{\mathrm{AH}}$

$8 \overrightarrow{\mathrm{AO}}=(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}+\overrightarrow{\mathrm{AG}}+\overrightarrow{\mathrm{AH}})$
$=8(2 \hat{i}+3 \hat{j}-4 \hat{k})$.
$=16 \hat{i}+24 \hat{j}-32 \hat{k}$
12. Two radioactive substances X and Y originally have N_{1} and N_{2} nuclei respectively. Half life of X is half of the half life of Y. After there half lives of Y, number of nuclei of both are equal. The ratio $\frac{N_{1}}{N_{2}}$ will be equal to :
(1) $\frac{8}{1}$
(2) $\frac{1}{8}$
(3) $\frac{3}{1}$
(4) $\frac{1}{3}$

Sol. 1

After n half life no of nuclei undecayed $=\frac{N_{0}}{2^{n}}$
given $T_{\frac{1}{2} x}=\frac{T_{\frac{1}{2}} y}{2}$
So 3 half life of $y=6$ half life of x
Given, $N_{x}=N_{y}\left(\right.$ after $\left.3 T_{\frac{1}{2} y}\right)$
$\frac{N_{1}}{2^{6}}=\frac{N_{2}}{2^{3}}$
$\frac{N_{1}}{N_{2}}=\frac{2^{6}}{2^{3}}=2^{3}=\frac{8}{1}$
13. Match List -I with List- II :

List-I
(a)h (Planck's constant)
(b)E (kinetic energy)
(c)V (electric potential)
(d)P (linear momentum)

List-II

(i) $\left[\mathrm{M} \mathrm{T}^{-1}\right]$
(ii) $\left[M L^{2} \mathrm{~T}^{-1}\right]$
(iii) $\left[M L^{2} \mathrm{~T}^{-2}\right]$
(iv) $\left[\mathrm{ML}^{2} \mathrm{I}^{-1} \mathrm{~T}^{-3}\right]$

Choose the correct answer from the options given below :
(1) (a) \rightarrow (ii), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (i)
(2) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (iii)
(3) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (i)
(4) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (ii), (d) \rightarrow (i)

Sol. 1

K.E. $=\left[M L^{2} T^{-2}\right]$
$\mathrm{P}($ linear momentum $)=\left[\mathrm{MLT}^{-1}\right]$
h (planck's constant) $=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
$v($ electric potential $)=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]$
14. The pitch of the screw guage is 1 mm and there are 100 divisions on the circular scale. When nothing is put in between the jaws, the zero of the circular scale lines 8 divisions below the reference line. When a wire is placed between the jaws, the first linear scale division is clearly visible while $72^{\text {nd }}$ division on circular scale coincides with the reference line. The radius of the wire is :
(1) 1.64 mm
(2) 1.80 mm
(3) 0.82 mm
(4) 0.90 mm

Sol. 3

Least count. $=\frac{\text { pitch }}{\text { no. of div. }}=\frac{1 \mathrm{~mm}}{100}=0.01 \mathrm{~m}$

+ ve error $=8 \times$ L.C. $=+0.08 \mathrm{~mm}$
measured reading $=1 \mathrm{~mm}+72 \times$ L.C.
$=1 \mathrm{~mm}+0.72 \mathrm{~mm}$
$=1.72 \mathrm{~mm}$
True reading $=1.72-0.08$
$=1.64 \mathrm{~mm}$
Radius $=\frac{1.64}{2}=0.82 \mathrm{~mm}$

15. If the time period of a two meter long simple pendulum is 2 s , the acceleration due to gravity at the place where pendulum is executing S.H.M. is :
(1) $2 \pi^{2} \mathrm{~ms}^{-2}$
(2) $16 \mathrm{~m} / \mathrm{s}^{2}$
(3) $9.8 \mathrm{~ms}^{-2}$
(4) $\pi^{2} \mathrm{~ms}^{-2}$

Sol. 1

$T=2 \pi \sqrt{\frac{1}{g}}$
$\mathrm{T}^{2}=\frac{4 \pi^{2} I}{\mathrm{~g}}$
$g=\frac{4 \pi^{2} \|}{\mathrm{T}^{2}}$
$=\frac{4 \pi^{2} \times 2}{(2)^{2}}=2 \pi^{2} \mathrm{~ms}^{-2}$
16. An α particle and a proton are accelerated from rest by a potential difference of 200 V . After this, their de Broglie wavelengths are λ_{α} and λ_{p} respectively. The ratio $\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}$ is :
(1) 8
(2) 2.8
(3) 3.8
(4) 7.8

Sol. 2
$\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqv}}}$
$\frac{\lambda_{\mathrm{p}}}{\lambda_{\alpha}}=\sqrt{\frac{m_{\alpha} q_{\alpha}}{m_{p} q_{p}}}=\sqrt{\frac{4 \times 2}{1 \times 1}}$
$=2 \sqrt{2}=2.8$
17. Given below are two statements : one is labelled as Assertion A and the other is labelled as reason R.
Assertion A : The escape velocities of planet A and B are same. But A and B are of unequal mass.
Reason R : The product of their mass and radius must be same. $M_{1} R_{1}=M_{2} R_{2}$
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both A and R are correct but R is NOT the correct explanation of A
(2) A is correct but R is not correct
(3) Both A and R are correct and R is the correct explanation of A
(4) A is not correct but R is correct

Sol. 2
$\mathrm{V}_{\mathrm{e}}=$ escape velocity
$\mathrm{v}_{\mathrm{e}}=\sqrt{\frac{2 G M}{R}}$
so for same $v_{e}, \frac{M_{1}}{R_{1}}=\frac{M_{2}}{R_{2}}$
A is true but R is false
18. The angular frequency of alterlating current in a L-C-R circuit is $100 \mathrm{rad} / \mathrm{s}$. The components connected are shown in the figure. Find the value of inductance of the coil and capacity of condenser.

(1) 0.8 H and $250 \mu \mathrm{~F}$
(2) 0.8 H and $150 \mu \mathrm{~F}$
(3) 1.33 H and $250 \mu \mathrm{~F}$
(4) 1.33 H and $150 \mu \mathrm{~F}$

Sol. 1

Since key is open, circuit is series
$15=\mathrm{i}_{\text {rms }}$ (60)
$\therefore \mathrm{i}_{\mathrm{rms}}=\frac{1}{4} \mathrm{~A}$
Now, $20=\frac{1}{4} X_{L}=\frac{1}{4}(\omega \mathrm{~L})$
$\therefore \mathrm{L}=\frac{4}{5}=0.8 \mathrm{H}$
$\& 10=\frac{1}{4} \frac{1}{(100 \mathrm{C})}$
$C=\frac{1}{4000} F=250 \mu \mathrm{~F}$
19. Two coherent light sources having intensity in the ratio $2 x$ produce an interference pattern. The ratio $\frac{\mathrm{I}_{\text {max }}-\mathrm{I}_{\text {min }}}{\mathrm{I}_{\text {max }}+\mathrm{I}_{\text {min }}}$ will be :
(1) $\frac{2 \sqrt{2 x}}{x+1}$
(2) $\frac{\sqrt{2 x}}{2 x+1}$
(3) $\frac{2 \sqrt{2 x}}{2 x+1}$
(4) $\frac{\sqrt{2 x}}{x+1}$

Sol. 3

Let $\mathrm{I}_{1}=2 \mathrm{x}$
$\mathrm{I}_{2}=1$
$\mathrm{I}_{\max }=\left(\sqrt{\mathrm{I}_{1}}+\sqrt{\mathrm{I}_{2}}\right)^{2}$
$I_{\text {min }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$
$\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{(\sqrt{2 x}+1)^{2}-(\sqrt{2 x}-1)^{2}}{(\sqrt{2 x}+1)^{2}+(\sqrt{2 x}-1)^{2}}$
$=\frac{4 \sqrt{2 x}}{2+4 x}=\frac{2 \sqrt{2 x}}{1+2 x}$
20. Magnetic fields at two points on the axis of a circular coil at a distance of 0.05 m and 02 m from the centre are in the rato $8: 1$. The radius of coil is \qquad -
(1) 0.15 m
(2) 0.2 m
(3) 0.1 m
(4) 1.0 m

Sol. 3

$B=\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
at $x_{1}=0.05 m, B_{1}=\frac{\mu_{0} N i R^{2}}{2\left(R^{2}+(0.05)^{2}\right)^{3 / 2}}$
at $\mathrm{x}_{2}=0.2 \mathrm{~m}, \mathrm{~B}_{2}=\frac{\mu_{0} \mathrm{NiR}^{2}}{2\left(\mathrm{R}^{2}+(0.2)^{2}\right)^{3 / 2}}$
$\frac{\mathrm{B}_{1}}{\mathrm{~B}_{2}}=\frac{\left(\mathrm{R}^{2}+0.04\right)^{3 / 2}}{\left(\mathrm{R}^{2}+0.0025\right)^{3 / 2}}$
$\left(\frac{8}{1}\right)^{2 / 3}=\frac{\mathrm{R}^{2}+0.04}{\mathrm{R}^{2}+0.0025}$
$4\left(R^{2}+0.0025\right)=R^{2}+0.04$
$3 R^{2}=0.04-0.0100$
$R^{2}=\frac{0.03}{3}=0.01$
$R=\sqrt{0.01}=0.1 \mathrm{~m}$

Section - B

1. The same size images are formed by a convex lens when the object is placed at 20 cm or at 10 cm from the lens. The focal length of convex lens is \qquad cm.

Sol. 15
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\mathrm{m}=\frac{\mathrm{v}}{\mathrm{u}}$
from (1) and (2) we get
$m=\frac{f}{f+u}$
given conditions
$m_{1}=-m_{2}$
$\frac{f}{f-10}=\frac{-f}{f-20}$
$f-20=-f+10$
$2 f=30$
$\mathrm{f}=15 \mathrm{~cm}$
2. The electric field in a region is given by $\vec{E}=\left(\frac{3}{5} E_{0} \hat{i}+\frac{4}{5} E_{0} \hat{j}\right) \frac{N}{C}$. The ratio of flux of reported field through the rectangular surface of area $0.2 \mathrm{~m}^{2}$ (parallel to $y-z$ plane) to that of the surface of area $0.3 \mathrm{~m}^{2}$ (parallel to $x-z$ plane) is $a: b$, where $a=$ \qquad
[Here \hat{i}, \hat{j} and \hat{k} are unit vectors along x, y and z-axes respectively]

Sol. 0.5

$\phi=\vec{E} \cdot \vec{A}$
$\vec{A}_{a}=0.2 \hat{i}$
$\vec{A}_{b}=0.3 \hat{j}$
$\phi_{a}=\left(\frac{3}{5} E_{0} \hat{i}+\frac{4}{5} E_{0} \hat{j}\right) \cdot 0 \cdot 2 \hat{i}$
$\phi_{\mathrm{a}}=\frac{3}{5} \mathrm{E}_{0} \times 0.2$
$\phi_{a}=\left(\frac{3}{5} E_{0} \hat{i}+\frac{4}{5} E_{0} \hat{j}\right) .0 .3 \hat{j}$
$\phi_{\mathrm{b}}=\frac{4}{5} \mathrm{E}_{0} \times 0.3$
$\frac{a}{b}=\frac{\phi_{a}}{\phi_{b}}=\frac{\frac{3}{5} E_{0} \times 0.2}{\frac{4}{5} E_{0} \times 0.3}=\frac{6}{12}=0.5$
3. 512 identical drops of mercury are charged to a potential of 2 V each. The drops are joined to form a single drop. The potential of this drop is \qquad V.

Sol. 128
Let charge on each drop $=q$
radius $=r$
$v=\frac{k q}{r}$
$2=\frac{k q}{r}$
radius of bigger
$\frac{4}{3} \pi R^{3}=512 \times \frac{4}{3} \pi r^{3}$
$R=8 r$
$v=\frac{k(512) q}{R}=\frac{512}{8} \frac{k q}{r}=\frac{512}{8} \times 2$
$=128 \mathrm{~V}$
4. The potential energy (U) of a diatomic molecule is a function dependent on r (interatomic distance) as $U=\frac{\alpha}{r^{10}}-\frac{\beta}{r^{5}}-3$ Where, a and b are positive constants. The equilibrium distance between two atoms will $\left(\frac{2 \alpha}{\beta}\right)^{\frac{a}{b}}$. Where $a=$ \qquad
Sol. 1
$F=-\frac{d U}{d r}$
$F=-\left[-\frac{10 \alpha}{r^{11}}+\frac{5 \beta}{r^{6}}\right]$
for equilibrium, $F=0$
$\frac{10 \alpha}{r^{11}}=\frac{5 \beta}{r^{6}}$
$\frac{2 \alpha}{\beta}=r^{5}$
$r=\left(\frac{2 \alpha}{\beta}\right)^{1 / 5}$
$a=1$
5. A small bob tied at one end of a thin string of length 1 m is describing a vertical circle so that the maximum and minimum tension in the string are in the rato $5: 1$. The velocity of the bob at the highest position is \qquad m / s. (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
Sol. 5

by conservation of energy,

$$
\begin{equation*}
\mathrm{v}_{\min }^{2}=\mathrm{V}^{2}-4 \mathrm{gl} \tag{1}
\end{equation*}
$$

$T_{\max }=m g+\frac{m v^{2}}{\mathrm{l}}$
$T_{\text {min }}=\frac{m v_{\text {min }}^{2}}{\mathrm{l}}-\mathrm{mg}$
from equation (1) and (3)

$$
T_{\min }=\frac{m}{l}\left(v^{2}-4 g l\right)-m g
$$

$\frac{T_{\max }}{T_{\min }}=\frac{\frac{v^{2}}{l}+g}{\frac{v^{2}}{l}-5 g}$
$\frac{5}{1}=\frac{\frac{v^{2}}{1}+10}{\frac{v^{2}}{1}-50}$
$5 v^{2}-250=v^{2}+10$
$v^{2}=65$
from equation (4) and (1)
$v_{\text {min }}^{2}=65-40=25$
$v_{\text {min }}=5$
6. In a certain themodynamical process, the pressure ofa gas depends on its volume as kV^{3}. The work done when the temperature changes from $100^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ will be \qquad $n R$, where n denotes number of moles of a gas.
Sol. 50
$\mathrm{P}=k v^{3}$
$p v^{-3}=k$
$x=-3$
$w=\frac{n R\left(T_{1}-T_{2}\right)}{x-1}$
$=\frac{n R(100-300)}{-3-1}$
$=\frac{\mathrm{nR}(-200)}{-4}$
$=50 \mathrm{nR}$
7. In the given circuit of potentiometer, the potentital difference E across $A B$ (10 m length) is larger than E_{1} and E_{2} as well. For key K_{1} (closed), the jockey is adjusted to touch the wire at point J_{1} so that there is no deflection in the galvanometer. Now the first battery $\left(\mathrm{E}_{1}\right)$ is replaced by second battery $\left(E_{2}\right)$ for working by making K_{1} open and E_{2} closed. The galvanometer gives then null deflection at J_{2}. The value of $\frac{E_{1}}{E_{2}}$ is $\frac{a}{b}$, where $a=$ \qquad -.

Sol. 1
$\frac{E_{1}}{E_{2}}=\frac{I_{1}}{I_{2}}$
$=\frac{3 \times 100 \mathrm{~cm}+(100-20) \mathrm{cm}}{7 \times 100 \mathrm{~cm}+60 \mathrm{~cm}}$
$=\frac{380}{760}=\frac{1}{2}=\frac{a}{b}$
$a=1$
8. A monoatomic gas of mass 4.0 u is kept in an insulated container. Container is moving with velocity $30 \mathrm{~m} / \mathrm{s}$. If container is suddenly stopped then change in temperature of the gas ($R=$ gas constant) is $\frac{x}{3 R}$. Value of x is \qquad .

Sol. 3600

$\Delta \mathrm{K}_{\mathrm{E}}=\Delta \mathrm{U}$
$\Delta U={ }^{n} C_{v} \Delta T$
$\frac{1}{2} m v^{2}=\frac{3}{2} n R \Delta T$
$\frac{m v^{2}}{3 n R}=\Delta T$
$\frac{4 \times(30)^{2}}{3 \times 1 \times \mathrm{R}}=\Delta \mathrm{T}$
$\Delta T=\frac{1200}{R}$
$\frac{x}{3 R}=\frac{1200}{R}$
$x=3600$
9. A coil of inductance 2 H having negligible resistance is connected to a source of supply whose voltage is given by $V=3 t$ volt. (where t is in second). If the voltage is applied when $t=0$, then the energy stored in the coil after 4 s is \qquad J.

Sol. 144

$\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=\varepsilon$
$=3 \mathrm{t}$
$\mathrm{L} \int \mathrm{di}=3 \int \mathrm{tdt}$
$L i=\frac{3 t^{2}}{2}$
$\mathrm{i}=\frac{3 \mathrm{t}^{2}}{2 \mathrm{~L}}$
energy, $E=\frac{1}{2} \mathrm{Li}^{2}$
$=\frac{1}{2} \mathrm{~L}\left(\frac{3 \mathrm{t}^{2}}{2 \mathrm{~L}}\right)^{2}$
$=\frac{1}{2} \times \frac{9 t^{4}}{4 \mathrm{~L}}$
$=\frac{9}{8} \times \frac{(4)^{4}}{4 \times 2}=144 \mathrm{~J}$
10. A transmitting station releases waves of wavelength 960 m . A capacitor of $256 \mu \mathrm{~F}$ is used in the resonant circuit. The self inductance of coil necessary for resonance is \qquad $\times 10^{-8} \mathrm{H}$.
Sol. 10
Since resonance
$\omega_{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{LC}}}$
$\therefore 2 \pi \mathrm{f}=\frac{1}{\sqrt{\mathrm{LC}}}$
$\therefore 4 \pi^{2} \frac{\mathrm{C}^{2}}{\lambda^{2}}=\frac{1}{\mathrm{LC}}$
$\therefore \frac{4 \pi^{2} \times 9 \times 10^{8} \times 9 \times 10^{8}}{960 \times 960}=\frac{1}{\mathrm{~L} \times 2.56 \times 10^{-6}}$
$L=\frac{375 \times 960}{10^{-6} \times 4 \times \pi^{2} \times 9 \times 10^{16}}=\frac{10^{3}}{10^{10}}$
$=10^{-7} \mathrm{H}$
$=10 \times 10^{-8}$

25 ${ }^{\text {th }}$ Feb. 2021 | Shift - 1 CHEMISTRY

SECTION - A

1. Ellingham diagram is a graphical representation of:
(1) $\Delta \mathrm{G}$ vs T
(2) ($\Delta \mathrm{G}-\mathrm{T} \Delta \mathrm{S}$) vs T
(3) $\Delta \mathrm{H}$ vs T
(4) $\Delta \mathrm{G}$ vs P

Sol. (1)
Ellingham diagram tells us about the spontanity of a reaction with temperature.
2. Which of the following equation depicts the oxidizing nature of $\mathrm{H}_{2} \mathrm{O}_{2}$?
(1) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
(2) $\mathrm{KIO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KIO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(3) $2 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Sol. (3)

$2 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Oxygen reduces from -1 to -2
So, its reduction will takes place. Hence it will behave as oxidising agent or it shows oxidising nature.
While in other option it change from (-1) to 0 .
3. In Freundlich adsorption isotherm at moderate pressure, the extent of adsorption $\left(\frac{x}{m}\right)$ is directly proportional to P^{x}. The value of x is:
(1) ∞
(2) 1
(3) zero
(4) $\frac{1}{n}$

Sol. (4)
$\frac{x}{m}=p^{x}$
the formula is $\frac{x}{m}=p^{1 / n}$
Hence $x=\frac{1}{n}$
The value of ' n ' is any natural number.
4. According to molecular orbital theory, the species among the following that does not exist is:
(1) $\mathrm{He}_{2}{ }^{-}$
(2) $\mathrm{He}_{2}{ }^{+}$
(3) $\mathrm{O}_{2}{ }^{2-}$
(4) Be_{2}

Sol. (4)

B.O. of Be_{2} is zero, So it does not exist.
5. Identify A in the given chemical reaction.

(1)

(2)

(3)

(4)

Sol. (4)

Aromatization reaction or hydroforming reaction.
6. Given below are two statements:

Statement-I : CeO_{2} can be used for oxidation of aldehydes and ketones.
Statement-II : Aqueous solution of EuSO_{4} is a strong reducing agent.
(1) Statement I is true, statement II is false
(2) Statement I is false, statement II is true
(3) Both Statement I and Statement II are false
(4) Both Statement I and Statement II are true

Sol. (4)

CeO_{2} can be used as oxidising agent like seO_{2}.
Similarly EuSO_{4} used as a reducing agent.
7. The major product of the following chemical reaction is:

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} \xrightarrow[\text { 3) } \mathrm{Pd} / \mathrm{BaSO}_{4}, \mathrm{H}_{2}]{\begin{array}{l}
\text { 1) } \mathrm{H}_{3} \mathrm{O}^{+}, \Delta \\
\text { 2) } \mathrm{SOCl}_{2}
\end{array}} \text { ? }
$$

(1) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Sol. (2)

8. Complete combustion of 1.80 g of an oxygen containing compound $\left(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}\right)$ gave 2.64 g of CO and 1.08 g of $\mathrm{H}_{2} \mathrm{O}$. The percentage of oxygen in the organic compound is:
(1) 63.53
(2) 53.33
(3) 51.63
(4) 50.33

Sol. (2)

$\mathrm{n}_{\mathrm{CO}_{2}}=\frac{2.64}{44}=0.06$
$\mathrm{n}_{\mathrm{c}}=0.06$
weight of carbon $=0.06 \times 12=0.72 \mathrm{gm}$
$n_{\mathrm{H}_{2} \mathrm{O}}=\frac{1.08}{18}=0.06$
$\mathrm{n}_{\mathrm{H}}=0.06 \times 2=0.12$
weight of $\mathrm{H}=0.12 \mathrm{gm}$
\therefore Weight of oxygen in $\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}$
$=1.8-(0.72+0.12)$
$=0.96$ gram
$\%$ weight of oxygen $=\frac{0.96}{1.8} \times 100$

$$
=53.3 \%
$$

9. The correct statement about $\mathrm{B}_{2} \mathrm{H}_{6}$ is:
(1) All B-H-B angles are of 120°.
(2) Its fragment, BH_{3}, behaves as a Lewis base.
(3) Terminal $\mathrm{B}-\mathrm{H}$ bonds have less p-character when compared to bridging bonds.
(4) The two $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bonds are not of same length.

Sol. (3)

Terminal bond angle is greater than that of bridge bond angle
Bond angle \propto S-character

$$
\propto \frac{1}{\mathrm{p}-\text { character }}
$$

10. In which of the following pairs, the outer most electronic configuration will be the same?
(1) Fe^{2+} and Co^{+}
(2) Cr^{+}and Mn^{2+}
(3) Ni^{2+} and Cu^{+}
(4) V^{2+} and Cr^{+}

Sol. (2)

$\mathrm{Cr}^{+} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
$\mathrm{Mn}^{2+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
11. Which statement is correct?
(1) Buna-S is a synthetic and linear thermosetting polymer
(2) Neoprene is addition copolymer used in plastic bucket manufacturing
(3) Synthesis of Buna-S needs nascent oxygen
(4) Buna-N is a natural polymer

Sol. (3)
Synthesis of Buna-S needs nascent oxygen.
12. Given below are two statements:

Statement-I : An allotrope of oxygen is an important intermediate in the formation of reducing smog.
Statement-II : Gases such as oxides of nitrogen and sulphur present in troposphere contribute to the formation of photochemical smog.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I and Statement II are true
(2) Statement I is true about Statement II is false
(3) Both Statement I and Statement II are false
(4) Statement I is false but Statement II is true

Sol. (3)

Reducing smog as is acts as reducing agent, the reducing character is due to presence of sulphur dioxide and carbon particles.
13. The plots of radial distribution functions for various orbitals of hydrogen atom against ' r ' are given below:
(A)

(B)

(C)

(D)

The correct plot for 3 s orbital is:
(1) D
(2) B
(3) A
(4) C

Sol. (1)

3s orbital
Number of radial nodes $=\mathrm{n}-\ell-1$
For 3 s orbital $\mathrm{n}=3 \quad \ell=0$
Number of radial nodes $=3-0-1=2$
It is correctly represented in graph of option D
14. Which of the glycosidic linkage galactose and glucose is present in lactose?
(1) C-1 of glucose and C-6 of galactose
(2) C-1 of galactose and C-4 of glucose
(3) $\mathrm{C}-1$ of glucose and $\mathrm{C}-4$ of galactose
(4) C-1 of galactose and C-6 of glucose

Sol. (2)

β-D-Galactose β-D-Glucose
15. Which one of the following reactions will not form acetaldehyde?
(1)

(2)

(3) $\quad \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{O}_{2} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{Pd}(\mathrm{II}) / \mathrm{Cu}(\mathrm{II})}$
(4)

Sol. (1)

16. Which of the following reaction/s will not give p-aminoazobenzene?
(A)

iii) Aniline
(B)

(C)

(1) B only
(2) A and B
(3) C only
(4) A only

Sol. (1)

(C)

17. The hybridization and magnetic nature of $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, respectively are:
(1) $d^{2} s p^{3}$ and paramagnetic
(2) $s p^{3} d^{2}$ and paramagnetic
(3) $d^{2} s p^{3}$ and diamagnetic
(4) $s p^{3} d^{2}$ and diamagnetic

Sol. (1)

1. $\left(\mathrm{Mn}(\mathrm{CN})_{6}\right)^{4-}$
$\mathrm{Mn}^{++}=3 \mathrm{~d}^{5}$
$\mu=\sqrt{3}$
hybridization $=d^{2} s^{3}$

2. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ $\mathrm{Fe}^{3+}=3 \mathrm{~d}^{5}$
$\mu=\sqrt{3}$
Hybridization $-d^{2} s p^{3}$

3. Identify A and B in the chemical reaction.

(1) $A=$

(2)

(3)

(4)

Sol. (4)

19. Compound(s) which will liberate carbon dioxide with sodium bicarbonate solution is/are:
$A=$

(1) B and C only
(2) B only
(3) A and B only
(4) C only

Sol. (1)
Compounds which are more acidic then $\mathrm{H}_{2} \mathrm{CO}_{3}$, gives CO_{2} gas on reaction with NaHCO_{3}. Compound B i.e. Benzoic acid and compound C i.e. picric acid both are more acidic than $\mathrm{H}_{2} \mathrm{CO}_{3}$.
20. The solubility of AgCN in a buffer solution of $\mathrm{pH}=3$ is x . The value of x is:
[Assume: No cyano complex is formed; $\mathrm{K}_{\text {sp }}(\mathrm{AgCN})=2.2 \times 10^{-16}$ and $\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=6.2 \times 10^{-10}$]
(1) 0.625×10^{-6}
(2) 1.6×10^{-6}
(3) 2.2×10^{-16}
(4) 1.9×10^{-5}

Sol. (4)

Let solubility is x
$\mathrm{AgCN} \underset{\mathrm{x}}{\rightleftharpoons} \underset{\mathrm{x}}{\mathrm{Ag}^{+}+\mathrm{CN}^{-}} \quad \mathrm{K}_{\mathrm{sp}}=2.2 \times 10^{-16}$
$\mathrm{H}^{+}+\mathrm{CN}^{-} \rightleftharpoons \mathrm{HCN} \quad \mathrm{K}=\frac{1}{\mathrm{~K}_{\mathrm{a}}}=\frac{1}{6.2 \times 10^{-10}}$
$\mathrm{K}_{\mathrm{sp}} \times \frac{1}{\mathrm{~K}_{\mathrm{a}}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right] \times \frac{[\mathrm{HCN}]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}$
$2.2 \times 10^{-16} \times \frac{1}{6.2 \times 10^{-10}}=\frac{[\mathrm{S}][\mathrm{S}]}{10^{-3}}$
$S^{2}=\frac{2.2}{6.2} \times 10^{-9}$
$S^{2}=3.55 \times 10^{-10}$
$S=\sqrt{3.55 \times 10^{-10}}$
$S=1.88 \times 10^{-5} \Rightarrow 1.9 \times 10^{-5}$

SECTION - B

1. The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}_{(\mathrm{s})}$ with oxygen was run in a bomb calorimeter and $\Delta \mathrm{U}$ was found to be $-742.24 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The magnitude of $\Delta \mathrm{H}_{298}$ for the reaction
$\mathrm{NH}_{2} \mathrm{CN}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ is \qquad kJ. (Rounded off to the nearest integer) [Assume ideal gases and $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]

Sol. 741 kJ/mol

$\mathrm{NH}_{2} \mathrm{CN}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{ng}=(1+1)-\frac{3}{2}=\frac{1}{2}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{ng} \mathrm{RT}$
$=-742.24+\frac{1}{2} \times \frac{8.314 \times 298}{1000}$
$=-742.24+1.24$
$=741 \mathrm{~kJ} / \mathrm{mol}$
2. In basic medium $\mathrm{CrO}_{4}{ }^{2-}$ oxidizes $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to form SO_{4}^{2-} and itself changes into $\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}$. The volume of $0.154 \mathrm{M} \mathrm{CrO}_{4}{ }^{2-}$ required to react with 40 mL of $0.25 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is \qquad mL . (Rounded-off to the nearest integer)

Sol. 173 mL

$17 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{CrO}_{4}+3 \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow 6 \mathrm{SO}_{4}+8 \mathrm{Cr}(\mathrm{OH})_{4}^{-}+2 \mathrm{OH}^{-}$
Applying mole-mole analysis
$\frac{0.154 \times v}{8}=\frac{40 \times 0.25}{3}$
$V=173 \mathrm{~mL}$
3. For the reaction, $a A+b B \rightarrow c C+d D$, the plot of $\log k v s \frac{1}{T}$ is given below:

The temperature at which the rate constant of the reaction is $10^{-4} \mathrm{~s}^{-1}$ is \qquad K.
[Rounded off to the nearest integer)
[Given: The rate constant of the reaction is $10^{-5} \mathrm{~s}^{-1}$ at 500 K]

Sol. 526 K

$\log _{10} K=\log _{10} A-\frac{E_{a}}{2.303 R T}$
Slope $=\frac{E_{a}}{2.303 R}=-10000$
$\log _{10} \frac{K_{2}}{K_{1}}=\frac{E_{a}}{2.303 R} \times\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
$\log _{10} \frac{10^{-4}}{10^{-5}}=10000 \times\left[\frac{1}{500}-\frac{1}{\mathrm{~T}}\right]$
$1=10000 \times\left[\frac{1}{500}-\frac{1}{\mathrm{~T}}\right]$
$\frac{1}{10000}=\frac{1}{500}-\frac{1}{T}$
$\frac{1}{T}=\frac{1}{500}-\frac{1}{10000}$
$\frac{1}{\mathrm{~T}}=\frac{20-1}{10000}=\frac{19}{10000}$
$T=\frac{10,000}{19} \Rightarrow 526 \mathrm{~K}$
4. 0.4 g mixture of $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and some inert impurities was first titrated with $\frac{\mathrm{N}}{10} \mathrm{HCl}$ using phenolphthalein as an indicator, 17.5 mL of HCl was required at the end point. After this methyl orange was added and titrated. 1.5 mL of same HCl was required for the next end point. The weight percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture is \qquad . (Rounded-off to the nearest integer)
Sol. 3\%
$1^{\text {st }}$ end point reaction
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{nf}=1$
$\mathrm{NaCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaHCO}_{3}$
$\mathrm{nf}=1$
Eq of HCl used $=\mathrm{n}_{\mathrm{NaOH}} \times 1+\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \times 1$
$17.5 \times \frac{1}{10} \times 10^{-3}=\mathrm{n}_{\mathrm{NaOH}}+\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
$2^{\text {nd }}$ end point
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
$1.5 \times \frac{1}{10} \times 10^{-3}=\mathrm{n}_{\mathrm{NaHCO}_{3}} \times 1=\mathrm{n}_{\mathrm{NaHCO}_{3}}$
$0.15 \mathrm{mmol}=\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
$0.15=\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
$\mathrm{W}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\frac{0.15 \times 106 \times 10^{-3}}{0.5} \times 100 \times 10$
$=3 \times 106 \times 10^{-2}$
$=3 \times 1.06=3.18 \%$
5. The ionization enthalpy of Na^{+}formation from $\mathrm{Na}_{(\mathrm{g})}$ is $495.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, while the electron gain enthalpy of Br is $-325.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Given the lattice enthalpy of NaBr is $-728.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The energy for the formation of NaBr ionic solid is (-) \qquad $\times 10^{-1} \mathrm{~kJ} \mathrm{~mol}^{-1}$.
Sol. 5576 kJ
$\mathrm{Na}(\mathrm{s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})$
$\Delta \mathrm{H}=495.8$
$\frac{1}{2} \mathrm{Br}_{2}(\ell)+\mathrm{e}^{-} \longrightarrow \mathrm{Br}^{-}(\mathrm{g})$
$\Delta H=325$
$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Br}^{-}(\mathrm{g}) \longrightarrow \mathrm{NaBr}(\mathrm{s})$
$\Delta \mathrm{H}=-728.4$
$\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{Br}_{2}(\ell) \longrightarrow \mathrm{NaBr}(\mathrm{s}) . \quad \Delta \mathrm{H}=$?
$\Delta \mathrm{H}=495.8-325-728.4$
$-557.6 \mathrm{~kJ}=-5576 \times 10^{-1} \mathrm{~kJ}$
6. Consider the following chemical reaction.

The number of sp^{2} hybridized carbon atom(s) present in the product is \qquad .
Sol. 7

All carbon atoms in benzaldehyde are sp^{2} hybridised
7. A car tyre is filled with nitrogen gas at 35 psi at $27^{\circ} \mathrm{C}$. It will burst if pressure exceeds 40 psi. The temperature in ${ }^{\circ} \mathrm{C}$ at which the car tyre will burst is \qquad . (Rounded-off to the nearest integer)
Sol. $\quad 69.85^{\circ} \mathrm{C} \simeq 70^{\circ} \mathrm{C}$
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$\frac{35}{300}=\frac{40}{\mathrm{~T}_{2}}$
$\mathrm{T}_{2}=\frac{40 \times 300}{35}$
$=342.86 \mathrm{~K}$
$=69.85^{\circ} \mathrm{C} \simeq 70^{\circ} \mathrm{C}$
8. Among the following, the number of halide(s) which is/are inert to hydrolysis is \qquad .
(A) BF_{3}
(B) SiCl_{4}
(C) PCl_{5}
(D) SF_{6}

Sol. 1
Due to crowding SF_{6} is not hydrolysed.
9. 1 molal aqueous solution of an electrolyte $A_{2} B_{3}$ is 60% ionised. The boiling point of the solution at 1 atm is \qquad K. (Rounded-off to the nearest integer)
[Given K_{b} for $\left(\mathrm{H}_{2} \mathrm{O}\right)=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]

Sol. $\quad 375 \mathrm{~K}$

$\mathrm{A}_{2} \mathrm{~B}_{3} \longrightarrow 2 \mathrm{~A}^{+3}+3 \mathrm{~B}^{-2}$
No. of ions $=2+3=5$
$i=1+(n-1) \propto$
$=1+(5-1) \times 0.6$
$=1+4 \times 0.6=1+2.4=3.4$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m} \times \mathrm{i}$

$$
=0.52 \times 1 \times 3.4=1.768^{\circ} \mathrm{C}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solution }}-\left[\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{H}_{2} \mathrm{O}}\right]_{\text {solution }}$
$1.768=\left(T_{b}\right)_{\text {solution }}-100$
$\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {solution }}=101.768^{\circ} \mathrm{C}$
$=375 \mathrm{~K}$
10. Using the provided information in the following paper chromatogram:

Fig: Paper chromatography for compounds A and B the calculated R_{f} value of A \qquad $\times 10^{-1}$.
Sol. 4
$R_{f}=\frac{\text { Dis tance travelled by compound }}{\text { Distan ce travelled by solvent }}$
On chromatogram distance travelled by compound is $\rightarrow 2 \mathrm{~cm}$
Distance travelled by solvent $=5 \mathrm{~cm}$
So $R_{f}=\frac{2}{5}=4 \times 10^{-1}=0.4$

25 ${ }^{\text {th }}$ Feb. 2021 | Shift - 1 MATHEMATICS

Section : Mathematics Section A

1. The coefficients a, b and c of the quadratic equation, $a x^{2}+b x+c=0$ are obtained by throwing a dice three times. The probability that this equation has equal roots is :
(1) $\frac{1}{54}$
(2) $\frac{1}{72}$
(3) $\frac{1}{36}$
(4) $\frac{5}{216}$

Ans. (4)
Sol. $a x^{2}+b x+c=0$
$a, b, c \in\{1,2,3,4,5,6\}$
$\mathrm{n}(\mathrm{s})=6 \times 6 \times 6=216$
$D=0 \Rightarrow b^{2}=4 a c$
$\begin{array}{lll}a c=\frac{b^{2}}{4} & \text { If } b=2, a c=1 \\ \text { If } b=4, a c=4\end{array} \quad \Rightarrow \quad \begin{aligned} & a=1, c=1 \\ & \\ & \\ & \text { If } b=6, a c=9 \Rightarrow\end{aligned} \begin{aligned} & a=1, c=4 \\ & \\ & \\ & \end{aligned}$
\therefore probability $=\frac{5}{216}$
2. Let α be the angle between the lines whose direction cosines satisfy the equations $I+m-n$ $=0$ and $\mathrm{I}^{2}+\mathrm{m}^{2}-\mathrm{n}^{2}=0$. Then the value of $\sin ^{4} \alpha+\cos ^{4} \alpha$ is :
(1) $\frac{3}{4}$
(2) $\frac{1}{2}$
(3) $\frac{5}{8}$
(4) $\frac{3}{8}$

Ans. (3)
Sol. $r^{2}+m^{2}+n^{2}=1$
$\therefore 2 \mathrm{n}^{2}=1 \Rightarrow \mathrm{n}= \pm \frac{1}{\sqrt{2}}$
$\therefore I^{2}+\mathrm{m}^{2}=\frac{1}{2} \& I+\mathrm{m}=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{1}{2}-2 \operatorname{lm}=\frac{1}{2}$
$\Rightarrow \mathrm{m}=0$ or $\mathrm{m}=0$
$\therefore \mathrm{I}=0, \mathrm{~m}=\frac{1}{\sqrt{2}} \quad$ or $\mathrm{I}=\frac{1}{\sqrt{2}}$
$<0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}>\quad$ or $\left\langle\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}>\right.$
$\therefore \cos \alpha=0+0+\frac{1}{2}=\frac{1}{2}$
$\therefore \sin ^{4} \alpha+\cos ^{4} \alpha=1-\frac{1}{2} \sin ^{2}(2 \alpha)=1-\frac{1}{2}, \frac{3}{4}=\frac{5}{8}$
3. The value of the integral $\int \frac{\sin \theta \cdot \sin 2 \theta\left(\sin ^{6} \theta+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{1-\cos 2 \theta} d \theta$ is (where c is a constant of integration)
(1) $\frac{1}{18}\left[9-2 \sin ^{6} \theta-3 \sin ^{4} \theta-6 \sin ^{2} \theta\right]^{\frac{3}{2}}+c$
(2) $\frac{1}{18}\left[11-18 \sin ^{2} \theta+9 \sin ^{4} \theta-2 \sin ^{6} \theta\right]^{\frac{3}{2}}+c$
(3) $\frac{1}{18}\left[11-18 \cos ^{2} \theta+9 \cos ^{4} \theta-2 \cos ^{6} \theta\right]^{\frac{3}{2}}+\mathrm{c}$
(4) $\frac{1}{18}\left[9-2 \cos ^{6} \theta-3 \cos ^{4} \theta-6 \cos ^{2} \theta\right]^{\frac{3}{2}}+c$

Ans. (3)
Sol. $\int \frac{2 \sin ^{2} \theta \cos \theta\left(\sin ^{6} \theta+\sin ^{4} \theta+\sin ^{2} \theta\right) \sqrt{2 \sin ^{4} \theta+3 \sin ^{2} \theta+6}}{2 \sin ^{2} \theta} d \theta$
Let $\sin \theta=\mathrm{t}, \cos \theta \mathrm{d} \theta=\mathrm{dt}$
$=\int\left(\mathrm{t}^{6}+\mathrm{t}^{4}+\mathrm{t}^{2}\right) \sqrt{2 \mathrm{t}^{4}+3 \mathrm{t}^{2}+6} \mathrm{dt}=\int\left(\mathrm{t}^{5}+\mathrm{t}^{3}+\mathrm{t}\right) \sqrt{2 \mathrm{t}^{6}+3 \mathrm{t}^{4}+6 \mathrm{t}^{2}} \mathrm{dt}$
Let $2 \mathrm{t}^{6}+3 \mathrm{t}^{4}+6 \mathrm{t}^{2}=\mathrm{z}$
$12\left(\mathrm{t}^{5}+\mathrm{t}^{3}+\mathrm{t}\right) \mathrm{dt}=\mathrm{dz}$
$=\frac{1}{12} \int \sqrt{\mathrm{z}} \mathrm{dz}=\frac{1}{18} \mathrm{z}^{3 / 2}+\mathrm{c}$
$=\frac{1}{18}\left[\left(2 \sin ^{6} \theta+3 \sin ^{4} \theta+6 \sin ^{2} \theta\right)^{3 / 2}+C\right.$
$=\frac{1}{18}\left[\left(1-\cos ^{2} \theta\right)\left(2\left(1-\cos ^{2} \theta\right)^{2}+3-3 \cos ^{2} \theta+6\right)\right]^{3 / 2}+C$
$=\frac{1}{18}\left[\left(1-\cos ^{2} \theta\right)\left(2 \cos ^{4} \theta-7 \cos ^{2} \theta+11\right)\right]^{3 / 2}+C$
$=\frac{1}{18}\left[-2 \cos ^{6} \theta+9 \cos ^{4} \theta-18 \cos ^{2} \theta+11\right]^{3 / 2}+C$
4. A man is observing, from the top of a tower, a boat speeding towards the tower from a certain point A, with uniform speed. At that point, angle of depression of the boat with the man's eye is 30° (Ignore man's height). After sailing for 20 seconds towards the base of the tower (which is at the level of water), the boat has reached a point B, where the angle of depression is 45°. Then the time taken (in seconds) by the boat from B to reach the base of the tower is :
(1) $10(\sqrt{3}-1)$
(2) $10 \sqrt{3}$
(3) 10
(4) $10(\sqrt{3}+1)$

Ans. (4)
Sol.

$\frac{h}{x+y}=\tan 30^{\circ}$
$x+y=\sqrt{3} h$
Also
$\frac{\mathrm{h}}{\mathrm{y}}=\tan 45^{\circ}$
$h=y$
put in (1)
$x+y=\sqrt{3} y$
$x=(\sqrt{3}-1) y$
$\frac{x}{20}=$ 'v'speed
\therefore time taken to reach
Foot from B
$\Rightarrow \frac{\mathrm{y}}{\mathrm{V}}$
$\Rightarrow \frac{x}{(\sqrt{3}-1) \cdot x} \times 20$
$\Rightarrow 10(\sqrt{3}+1)$
5. If $0<\theta, \phi<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \phi$ and
$\mathrm{z}=\sum_{\mathrm{n}=0}^{\infty} \cos ^{2 \mathrm{n}} \theta \cdot \sin ^{2 \mathrm{n}} \phi$ then:
(1) $x y z=4$
(2) $x y-z=(x+y) z$
(3) $x y+y z+z x=z$
(4) $x y+z=(x+y) z$

Ans. (4)
Sol. $x=1+\cos ^{2} \theta+\ldots \ldots . . . \infty$
$x=\frac{1}{1-\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$
$y=1+\sin ^{2} \phi+\ldots \ldots \ldots$
$y=\frac{1}{1-\sin ^{2} \phi}=\frac{1}{\cos ^{2} \phi}$
$z=\frac{1}{1-\cos ^{2} \theta \cdot \sin ^{2} \phi}=\frac{1}{1-\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)}=\frac{x y}{x y-(x-1)(y-1)}$
$x z+y z-z=x y$
$x y+z=(x+y) z$
6. The equation of the line through the point $(0,1,2)$ and perpendicular to the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-2}$ is :
(1) $\frac{x}{-3}=\frac{y-1}{4}=\frac{z-2}{3}$
(2) $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{3}$
(3) $\frac{x}{3}=\frac{y-1}{-4}=\frac{z-2}{3}$
(4) $\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{-3}$

Ans. (1)
Sol. $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{3}=\frac{\mathrm{z}-1}{-2}=\lambda$
Any point on this line $(2 \lambda+1,3 \lambda-1,-2 \lambda+1)$

Direction ratio of given line ($2,3,-2$)

Direction ratio of line to be found $(2 \lambda+1,3 \lambda-2,-2 \lambda-1)$
$\therefore \overrightarrow{\mathrm{d}}_{1} \cdot \overrightarrow{\mathrm{~d}}_{2}=0$
$\lambda=2 / 17$
Direction ratio of line $(21,-28,-21) \equiv(3,-4,-3) \equiv(-3,4,3)$
7. \quad The statement $A \rightarrow(B \rightarrow A)$ is equivalent to:
(1) $A \rightarrow(A \wedge B)$
(2) $A \rightarrow(A \vee B)$
(3) $A \rightarrow(A \rightarrow B)$
(4) $A \rightarrow(A \leftrightarrow B)$

Ans. (2)
Sol. $\quad A \rightarrow(B \rightarrow A)$
$\Rightarrow A \rightarrow(\sim B \vee A)$
$\Rightarrow \sim A \vee(\sim B \vee A)$
$\Rightarrow \sim B \vee(\sim A \vee A)$
$\Rightarrow \sim B \vee t$
$=\mathrm{t}$ (tantology)
From options:
(2) $A \rightarrow(A \vee B)$
$\Rightarrow \sim A \vee(A \vee B)$
$\Rightarrow(\sim A \vee A) \vee B$
$\Rightarrow t \vee B$
$\Rightarrow \mathrm{t}$
8. The integer ' k ', for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every x in R is:
(1) 3
(2) 2
(3) 4
(4) 0

Ans. (1)
Sol. D < 0

$$
\begin{aligned}
& (2(3 k-1))^{2}-4\left(8 k^{2}-7\right)<0 \\
& 4\left(9 k^{2}-6 k+1\right)-4\left(8 k^{2}-7\right)<0 \\
& k^{2}-6 k+8<0 \\
& (k-4)(k-2)<0 \\
& 2<k<4 \\
& \text { then } k=3
\end{aligned}
$$

9. A tangent is drawn to the parabola $y^{2}=6 x$ which is perpendicular to the line $2 x+y=1$. Which of the following points does NOT lie on it ?
(1) $(0,3)$
(2) $(-6,0)$
(3) $(4,5)$
(4) $(5,4)$

Ans. (4)
Sol. Equation of tangent : $y=m x+\frac{3}{2 m}$
$m_{T}=\frac{1}{2}(\because$ perpendicular to line $2 x+y=1)$
$\therefore \quad$ tangent is : $y=\frac{x}{2}+3 \quad \Rightarrow x-2 y+6=0$
10. Let $f, g: N \rightarrow N$ such that $f(n+1)=f(n)+f(1) \forall n \in N$ and g be any arbitrary function. Which of the following statements is NOT true ?
(1) f is one-one
(2) If fog is one-one, then g is one-one
(3) If g is onto, then fog is one-one
(4) If f is onto, then $f(n)=n \forall n \in N$

Ans. (3)
Sol. $f(n+1)=f(n)+1$
$f(2)=2 f(1)$
$f(3)=3 f(1)$
$f(4)=4 f(1)$
$f(n)=n f(1)$
$f(x)$ is one-one
11. Let the lines $(2-i) z=(2+i) \bar{z}$ and $(2+i) z+(i-2) \bar{z}-4 i=0$, (here $\left.i^{2}=-1\right)$ be normal to a circle C. If the line $i z+\bar{z}+1+i=0$ is tangent to this circle C, then its radius is :
(1) $\frac{3}{\sqrt{2}}$
(2) $3 \sqrt{2}$
(3) $\frac{3}{2 \sqrt{2}}$
(4) $\frac{1}{2 \sqrt{2}}$

Ans. (3)
Sol. (2-i)z=(2+i) \bar{z}
$\Rightarrow(2-i)(x+i y)=(2+i)(x-i y)$
$\Rightarrow 2 \mathrm{x}-\mathrm{ix}+2 \mathrm{iy}+\mathrm{y}=2 \mathrm{x}+\mathrm{ix}-2-\mathrm{i} \mathrm{y}+\mathrm{y}$
$\Rightarrow 2 \mathrm{ix}-4 \mathrm{iy}=0$
$\mathrm{L}_{1}: \mathrm{x}-2 \mathrm{y}=0$
$\Rightarrow(2+i) z+(i-2) \bar{z}-4 i=0$.
$\Rightarrow(2+i)(x+i y)+(i-2)(x-i y)-4 i=0$.
$\Rightarrow 2 \mathrm{x}+\mathrm{ix}+2 \mathrm{iy}-\mathrm{y}+\mathrm{ix}-2 \mathrm{x}+\mathrm{y}+2 \mathrm{iy}-4 \mathrm{i}=0$
$\Rightarrow 2 \mathrm{ix}+4 \mathrm{iy}-4 \mathrm{i}=0$
$\mathrm{L}_{2}: \mathrm{x}+2 \mathrm{y}-2=0$
Solve L_{1} and $L_{2} 4 y=2, y=\frac{1}{2}$
$\therefore \mathrm{x}=1$
Centre $\left(1, \frac{1}{2}\right)$
$\mathrm{L}_{3}: i \mathrm{z}+\overline{\mathrm{z}}+1+\mathrm{i}=0$
$\Rightarrow \mathrm{i}(\mathrm{x}+\mathrm{iy})+\mathrm{x}-\mathrm{iy}+1+\mathrm{i}=0$
$\Rightarrow \mathrm{ix}-\mathrm{y}+\mathrm{x}-\mathrm{iy}+1+\mathrm{i}=0$
$\Rightarrow(\mathrm{x}-\mathrm{y}+1)+\mathrm{i}(\mathrm{x}-\mathrm{y}+1)=0$
Radius $=$ distance from $\left(1, \frac{1}{2}\right)$ to $x-y+1=0$
$r=\frac{1-\frac{1}{2}+1}{\sqrt{2}}$
$r=\frac{3}{2 \sqrt{2}}$
12. All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in:
(1) $\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right)$
(2) $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$
(3) $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
(4) $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{11 \pi}{6}\right)$

Ans. (2)
Sol.

$\tan 2 \theta(1+\cos 2 \theta)>0$
$2 \theta \in\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right) \cup\left(2 \pi, \frac{5 \pi}{2}\right) \cup\left(3 \pi, \frac{7 \pi}{2}\right)$
$\Rightarrow \theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$
13. The image of the point $(3,5)$ in the line $x-y+1=0$, lies on :
(1) $(x-2)^{2}+(y-4)^{2}=4$
(2) $(x-4)^{2}+(y+2)^{2}=16$
(3) $(x-4)^{2}+(y-4)^{2}=8$
(4) $(x-2)^{2}+(y-2)^{2}=12$

Ans. (1)
Sol. Image of $P(3,5)$ on the line $x-y+1=0$ is
$\frac{x-3}{1}=\frac{y-5}{-1}=\frac{-2(3-5+1)}{2}=1$
$x=4, y=4$
\therefore Image is $(4,4)$
Which lies on
$(x-2)^{2}+(y-4)^{2}=4$
14. If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f^{\prime}\left(\frac{4}{3}\right)=0$, then ordered pair (a, b) is equal to :
(1) $(-5,8)$
(2) $(5,8)$
(3) $(5,-8)$
(4) $(-5,-8)$

Ans. (2)
Sol. $f(1)=f(2)$
$\Rightarrow 1-a+b-4=8-4 a+2 b-4$
$3 a-b=7$
$f^{\prime}(x)=3 x^{2}-2 a x+b$
$\Rightarrow f^{\prime}\left(\frac{4}{3}\right)=0 \Rightarrow 3 \times \frac{16}{9}-\frac{8}{3} a+b=0$
$\Rightarrow-8 a+3 b=-16$
$a=5, b=8$
15. If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ intersect each other at an angle of 90°, then which of the following relations is true ?
(1) $a+b=c+d$
(2) $a-b=c-d$
(3) $a b=\frac{c+d}{a+b}$
(4) $a-c=b+d$

Ans. (2)
Sol. $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$
diff : $\frac{2 x}{a}+\frac{2 y}{b} \frac{d y}{d x}=0 \Rightarrow \frac{y}{b} \frac{d y}{d x}=\frac{-x}{a}$
$\frac{d y}{d x}=\frac{-b x}{a y}$
$\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$
Diff : $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{dx}}{\mathrm{cy}}$
$m_{1} m_{2}=-1 \Rightarrow \frac{-b x}{a y} \times \frac{-d x}{c y}=-1$
$\Rightarrow \mathrm{bdx}^{2}=-\mathrm{acy}{ }^{2}$
(1) $-(3) \Rightarrow\left(\frac{1}{a}-\frac{1}{c}\right) x^{2}+\left(\frac{1}{b}-\frac{1}{d}\right) y^{2}=0$
$\Rightarrow \frac{\mathrm{c}-\mathrm{a}}{\mathrm{ac}} \mathrm{x}^{2}+\frac{\mathrm{d}-\mathrm{b}}{\mathrm{bd}} \times\left(\frac{-\mathrm{bd}}{\mathrm{ac}}\right) \mathrm{x}^{2}=0$ (using 5)
$\Rightarrow(c-a)-(d-b)=0$
$\Rightarrow \mathrm{c}-\mathrm{a}=\mathrm{d}-\mathrm{b}$
$\Rightarrow c-d=a-b$
16. $\lim _{n \rightarrow \infty}\left(1+\frac{1+\frac{1}{2}+\ldots \ldots .+\frac{1}{n}}{n^{2}}\right)^{n}$ is equal to :
(1) $\frac{1}{2}$
(2) $\frac{1}{e}$
(3) 1
(4) 0

Ans. (3)
Sol. It is 1^{∞} form

$$
\begin{aligned}
& \mathrm{L}=\mathrm{e}^{\lim _{n \rightarrow \infty}\left(\frac{1+\frac{1}{2}+\frac{1}{3}+\ldots . .+\frac{1}{n}}{n}\right)} \\
& \mathrm{S}=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\ldots \ldots \ldots+\frac{1}{15}\right) \\
& \mathrm{S}<1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right) \ldots \ldots \ldots+\underbrace{\left(\frac{1}{2^{P}}+\ldots \ldots .+\frac{1}{2^{\mathrm{P}}}\right)}_{2^{\mathrm{P}} \text { times }} \\
& \mathrm{S}<1+1+1+1+\ldots \ldots \ldots+1 \\
& \mathrm{~S}<\mathrm{P}+1 \\
& \therefore \mathrm{~L}=\mathrm{e}^{\lim _{n \rightarrow \infty} \frac{(\mathrm{P}+1)}{2^{P}}} \\
& \Rightarrow \mathrm{~L}=\mathrm{e}^{\circ}=1
\end{aligned}
$$

17. The total number of positive integral solutions (x, y, z) such that $x y z=24$ is
(1) 36
(2) 45
(3) 24
(4) 30

Ans. (4)
Sol. $x . y . z=24$
$x . y . z=2^{3} .3^{1}$
Now using beggars method.
3 things to be distributed among 3 persons
Each may receive none, one or more
$\therefore{ }^{5} \mathrm{C}_{2}$ ways
Similarly for '1' $\quad \therefore{ }^{3} \mathrm{C}_{2}$ ways
Total ways $={ }^{5} \mathrm{C}_{2} \cdot{ }^{3} \mathrm{C}_{2}=30$ ways
18. If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is $\frac{x^{2}-4 x+y+8}{x-2}$,then this curve also passes through the point :
(1) $(4,5)$
(2) $(5,4)$
(3) $(4,4)$
$(4)(5,5)$
Ans. (4)
Sol. $\frac{d y}{d x}=\frac{(x-2)^{2}+y+4}{(x-2)}=(x-2)+\frac{y+4}{(x-2)}$
Let $\mathrm{x}-2=\mathrm{t} \Rightarrow \mathrm{dx}=\mathrm{dt}$
and $y+4=u \Rightarrow d y=d u$
$\frac{d y}{d x}=\frac{d u}{d t}$
$\frac{d u}{d t}=t+\frac{u}{t} \Rightarrow \frac{d u}{d t}-\frac{u}{t}=t$
I.F $=e^{\int \frac{-1}{t} d t}=e^{-\operatorname{lnt}}=\frac{1}{t}$
u. $\frac{1}{\mathrm{t}}=\int \mathrm{t} \cdot \frac{1}{\mathrm{t}} \mathrm{dt} \Rightarrow \frac{\mathrm{u}}{\mathrm{t}}=\mathrm{t}+\mathrm{c}$
$\frac{y+4}{x-2}=(x-2)+c$
Passing through (0,0)
$\mathrm{c}=0$
$\Rightarrow(y+4)=(x-2)^{2}$
19. The value of $\int_{-1}^{1} x^{2} e^{\left[x^{3}\right]} d x$, where [$\left.t\right]$ denotes the greatest integer $\leq t$, is :
(1) $\frac{e+1}{3}$
(2) $\frac{e-1}{3 e}$
(3) $\frac{e+1}{3 e}$
(4) $\frac{1}{3 \mathrm{e}}$

Ans. (3)
Sol. $I=\int_{-1}^{0} x^{2} . e^{-1} d x+\int_{0}^{1} x^{2} d x$
$\therefore I=\left.\frac{\mathrm{x}^{3}}{3 \mathrm{e}}\right|_{-1} ^{0}+\left.\frac{\mathrm{x}^{3}}{3}\right|_{0} ^{1}$
$\Rightarrow \mathrm{I}=\frac{1}{3 \mathrm{e}}+\frac{1}{3}$
20. When a missile is fired from a ship, the probability that it is intercepted is $\frac{1}{3}$ and the probability that the missile hits the target, given that it is not intercepted, is $\frac{3}{4}$. If three missiles are fired independently from the ship, then the probability that all three hit the target, is:
(1) $\frac{1}{8}$
(2) $\frac{1}{27}$
(3) $\frac{3}{4}$
(4) $\frac{3}{8}$

Ans. (1)
Sol. Probability of not getting intercepted $=\frac{2}{3}$
Probability of missile hitting target $=\frac{3}{4}$
\therefore Probability that all 3 hit the target $=\left(\frac{2}{3} \times \frac{3}{4}\right)^{3}=\frac{1}{8}$

Section : Mathematics Section B

1. Let $A_{1}, A_{2}, A_{3}, \ldots .$. be squares such that for each $n \geq 1$, the length of the side of A_{n} equals the length of diagonal of A_{n+1}. If the length of A_{1} is 12 cm , then the smallest value of n for which area of A_{n} is less than one, is \qquad _.
Ans. (9)
Sol.

$x=\frac{12}{\sqrt{2}}$

$$
y=\frac{12}{(\sqrt{2})^{2}}
$$

$\therefore \quad$ Side lengths are in G.P.

$$
\begin{aligned}
& T_{n}=\frac{12}{(\sqrt{2})^{n-1}} \\
\therefore \quad & \text { Area }=\frac{144}{2^{n-1}}<1 \quad \Rightarrow 2^{n-1}>144 \\
& \text { Smallest } n=9
\end{aligned}
$$

2. The graphs of sine and cosine functions, intersect each other at a number of points and between two consecutive points of intersection, the two graphs enclose the same area A. Then A^{4} is equal to \qquad
Ans. (64)
Sol.

$=-\left[\left(\cos \frac{5 \pi}{4}+\sin \frac{\pi}{4}\right)-\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right)\right]$
$=-\left[\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\right]$
$=\frac{4}{\sqrt{2}}=2 \sqrt{2}$
$\Rightarrow A^{4}=(2 \sqrt{2})^{4}=64$
3. The locus of the point of intersection of the lines $(\sqrt{3}) k x+k y-4 \sqrt{3}=0$ and $\sqrt{3} x-y-4(\sqrt{3})$ $k=0$ is a conic, whose eccentricity is \qquad _.

Ans. (2)
Sol. $\quad \sqrt{3} \mathrm{kx}+\mathrm{ky}=4 \sqrt{3}$
$\sqrt{3} \mathrm{kx}-\mathrm{ky}=4 \sqrt{3} \mathrm{k}^{2}$
Adding equation (1) \& (2)
$2 \sqrt{3} \mathrm{kx}=4 \sqrt{3}\left(\mathrm{k}^{2}+1\right)$
$\mathrm{x}=2\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)$
Substracting equation (1) \& (2)
$y=2 \sqrt{3}\left(\frac{1}{k}-k\right)$
$\therefore \frac{\mathrm{x}^{2}}{4}-\frac{\mathrm{y}^{2}}{12}=4$

$$
\begin{aligned}
& \frac{x^{2}}{16}-\frac{y^{2}}{48}=1 \quad \text { Hyperbola } \\
& \therefore e^{2}=1+\frac{48}{16} \\
& e=2
\end{aligned}
$$

4. If $\mathrm{A}=\left[\begin{array}{lr}0 & -\tan \left(\frac{\theta}{2}\right) \\ \tan \left(\frac{\theta}{2}\right) & 0\end{array}\right]$ and $\left(\mathrm{I}_{2}+\mathrm{A}\right)\left(\mathrm{I}_{2}-\mathrm{A}\right)^{-1}$

$$
=\left[\begin{array}{ll}
a & -b \\
b & a
\end{array}\right], \text { then } 13\left(a^{2}+b^{2}\right) \text { is equal to }
$$

Ans. (13)
Sol. $A=\left[\begin{array}{cc}0 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 0\end{array}\right]$
$\Rightarrow I+A=\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$\Rightarrow I-A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right] \quad\left\{\therefore|I-A|=\sec ^{2} \theta / 2\right\}$
$\Rightarrow(\mathrm{I}-\mathrm{A})^{-1}=\frac{1}{\sec ^{2} \frac{\theta}{2}}\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$\Rightarrow(\mathrm{I}+\mathrm{A})(\mathrm{I}-\mathrm{A})^{-1}=\frac{1}{\sec ^{2} \frac{\theta}{2}}\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & -\tan \frac{\theta}{2} \\ \tan \frac{\theta}{2} & 1\end{array}\right]$
$=\frac{1}{\sec ^{2} \frac{\theta}{2}}\left[\begin{array}{cc}1-\tan ^{2} \frac{\theta}{2} & -2 \tan \frac{\theta}{2} \\ 2 \tan \frac{\theta}{2} & 1-\tan ^{2} \frac{\theta}{2}\end{array}\right]$
$\mathrm{a}=\frac{1-\tan ^{2} \frac{\theta}{2}}{\sec ^{2} \frac{\theta}{2}}$
$\mathrm{b}=\frac{2 \tan \frac{\theta}{2}}{\sec ^{2} \frac{\theta}{2}}$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}=1$
5. Let $f(x)$ be a polynomial of degree 6 in x, in which the coefficient of x^{6} is unity and it has extrema at $x=-1$ and $x=1$. If $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}=1$, then $5 . f(2)$ is equal to \qquad
Ans. (144)
Sol. $f(x)=x^{6}+a x^{5}+b x^{4}+x^{3}$
$\therefore f^{\prime}(x)=6 x^{5}+5 a x^{4}+4 b x^{3}+3 x^{2}$
Roots $1 \&-1$
$\therefore 6+5 a+4 b+3=0 \&-6+5 a-4 b+3=0$ solving
$a=-\frac{3}{5} \quad b=-\frac{3}{2}$
$\therefore f(x)=x^{6}-\frac{3}{5} x^{5}-\frac{3}{2} x^{4}+x^{3}$
$\therefore 5 . f(2)=5\left[64-\frac{96}{5}-24+8\right]=144$
6. The number of points, at which the function $f(x)=|2 x+1|-3|x+2|+\left|x^{2}+x-2\right|, x \in R$ is not differentiable, is \qquad _.
Ans. (2)
Sol. $f(x)=|2 x+1|-3|x+2|+\left|x^{2}+x-2\right|$
$f(x)= \begin{cases}x^{2}-7 ; & x>1 \\ -x^{2}-2 x-3 ; & -\frac{1}{2}<x<1 \\ -x^{2}-6 x-5 ; & -2<x<\frac{-1}{2} \\ x^{2}+2 x+3 ; & x<-2\end{cases}$
$\therefore f^{\prime}(x)= \begin{cases}2 x & x>1 \\ -2 x-3 ; & -\frac{1}{2}<x<1 \\ -2 x-6 ; & -2<x<\frac{-1}{2} \\ 2 x+2 ; & x<-2\end{cases}$
Check at $1,-2$ and $\frac{-1}{2}$
Non. Differentiable at $x=1$ and $\frac{-1}{2}$
7. If the system of equations

$$
\begin{aligned}
& k x+y+2 z=1 \\
& 3 x-y-2 z=2 \\
& -2 x-2 y-4 z=3
\end{aligned}
$$

has infinitely many solutions, then k is equal
to \qquad _.
Ans. (21)
Sol. $\quad \mathrm{D}=0$
$\Rightarrow\left|\begin{array}{ccc}\mathrm{k} & 1 & 2 \\ 3 & -1 & -2 \\ -2 & -2 & -4\end{array}\right|=0$
$\Rightarrow \mathrm{k}(4-4)-1(-12-4)+2(-6-2)$
$\Rightarrow 16-16=0$
Also. $D_{1}=D_{2}=D_{3}=0$
$\Rightarrow D_{2}=\left|\begin{array}{ccc}\mathrm{k} & 1 & 2 \\ 3 & 2 & -2 \\ -2 & 3 & -4\end{array}\right|=0$
$\Rightarrow k(-8+6)-1(-12-4)+2(9+4)=0$
$\Rightarrow-2 \mathrm{k}+16+26=0$
$\Rightarrow 2 \mathrm{k}=42$
$\Rightarrow \mathrm{k}=21$
8. Let $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$ and $\vec{r} . \vec{b}=0$, then $\vec{r} \cdot \vec{a}$ is equal to \qquad
Ans. (12)
Sol. $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$
$\vec{r} \times \vec{a}-\vec{c} \times \vec{a}=0$
$(\vec{r}-\vec{c}) \times \vec{a}=0$
$\therefore \overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}=\lambda \overrightarrow{\mathrm{a}}$
$\overrightarrow{\mathrm{r}}=\lambda \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}$
$\vec{r} \cdot \vec{b}=\lambda \vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{b}=0$
$\Rightarrow \lambda(1-2)+2=0$
$\Rightarrow \lambda=2$
$\therefore \overrightarrow{\mathrm{r}}=2 \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}$
$\vec{r} \cdot \vec{a}=2|\vec{a}|^{2}+\vec{a} \cdot \vec{c}$
$=2(1+4+1)+(1-2+1)$
$=12$
9. Let $A=\left[\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right]$, where x, y and z are real numbers such that $x+y+z>0$ and $x y z=2$. If $A^{2}=I_{3}$, then the value of $x^{3}+y^{3}+z^{3}$ is \qquad -.

Ans. (7)
Sol. $\quad A=\left[\begin{array}{ccc}\mathrm{x} & \mathrm{y} & \mathrm{z} \\ \mathrm{y} & \mathrm{z} & \mathrm{x} \\ \mathrm{z} & \mathrm{x} & \mathrm{y}\end{array}\right] \quad \therefore|\mathrm{A}|=\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}\right)$
$A^{2}=I_{3}$
$\left|A^{2}\right|=1$
$\therefore\left(x^{3}+y^{3}+z^{3}-3 x y z\right)^{2}=1$
$\Rightarrow x^{3}+y^{3}+z^{3}-3 x y z=1 \quad$ only as $(x+y+z>0)$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=6+1=7$
10. The total number of numbers, lying between 100 and 1000 that can be formed with the digits $1,2,3,4,5$, if the repetition of digits is not allowed and numbers are divisible by either 3 or 5 is \qquad .
Ans. (32)
Sol. $\quad \square \square$ divisible by $\rightarrow 3$ divisible by 5

$$
\begin{array}{ll}
12 \rightarrow 3,4,5 \rightarrow 3!=6 & \square \square 5 \\
15 \rightarrow 2,3,4 \rightarrow 3!=6 & 4 \times 3 \\
24 \rightarrow 1,3,5 \rightarrow 3!=6 & \\
42 \rightarrow 1,2,3 \rightarrow 3!=6 &
\end{array}
$$

$$
24
$$

Required No. $=24+12-4=32$

