JEE-Main-25-07-2021-Shift-1 (Memory Based)

PHYSICS

Question: A nucleus of mass 4 m disintegrates into two daughter nuclei of mass m and 3 m . Find the ratio of their respective De-Broglie wavelength?

Options:

(a) $\lambda_{e^{-}}>\lambda_{p^{+}}>\lambda_{\alpha}$
(b) $\lambda_{p^{+}}>\lambda_{\alpha}>\lambda_{e^{-}}$
(c) $\lambda_{\alpha}>\lambda_{p^{+}}>\lambda_{e^{-}}$
(d) $\lambda_{e^{-}}>\lambda_{\alpha}>\lambda_{p^{+}}$

Answer: (a)
Solution: $\lambda_{e}=\frac{1.227}{\sqrt{v}} \AA$
$\lambda_{p}=\frac{0.286}{\sqrt{v}} \AA$
$\lambda_{\alpha}=\frac{0.101}{\sqrt{v}} \AA$
$\therefore \lambda_{e^{-}}>\lambda_{p^{+}}>\lambda_{\alpha}$

Question: Earth moves around sun in elliptical orbit. If minimum and maximum distance between earth and sun are $r_{\text {min }}$ and $r_{\text {max }}$ respectively and minimum and maximum speed of earth are $V_{\min }$ and $V_{\max }$ respectively. Express $V_{\max }$ in terms of others parameters.
Options:
(a) $v_{\max }=\frac{r_{\min } v_{\min }}{r_{\max }}$
(b) $v_{\max }=\frac{r_{\max } v_{\min }}{r_{\min }+r_{\max }}$
(c) $v_{\max }=\frac{r_{\max } v_{\min }}{r_{\min }}$
(d) $v_{\text {max }}=v_{\text {min }}$

Answer: (c)
Solution: As at minimum distance v will be maximum.

By conservation of angular momentum.

$$
m v_{\max } r_{\min }=m v_{\min } r_{\max }
$$

$v_{\text {max }}=\frac{v_{\text {min }} r_{\text {max }}}{r_{\text {min }}}$

Question: In an amplitude modulator circuit, the carrier wave is given by, $C(t)=4 \sin \left(2 \pi \times 10^{7} t\right)$ while modulating signal is given by, $m(t)=2 \sin \left(2 \pi \times 10^{5} t\right)$. Then the bandwidth of the broadcast signal will be

Options:

(a) 0.2 MHz
(b) 2 MHz
(c) 20 MHz
(d) 40 MHz

Answer: (c)

Solution:

$$
\begin{aligned}
& c(t)=c \sin \left(2 \pi w_{c} t\right) \\
& m(t)=M \sin \left(2 \pi w_{m} t\right)
\end{aligned}
$$

Lower side band $(\mathrm{LSB})=w_{c}-w_{m}$
Lower side band (USB) $=w_{c}+w_{m}$
Band width $=$ USB - LSB
$=\left(w_{c}+w_{m}\right)-\left(w_{c}-w_{m}\right)$
$=2 w_{c}$
$=2 \times 10^{7} \mathrm{~Hz}$
$=20 \mathrm{MHz}$

Question: Find the ratio of the impulse transferred to the wall by a ball incident normally and then at 45° with normal?

Options:

(a) $1: 2$
(b) $\sqrt{2}: 1$
(c) $1: \sqrt{2}$
(d) $2: 1$

Answer: (b)
Solution:
For collision along normal
Impulse $(\Delta p)_{1}=2 m v$
For collision at 45°
Impulse $(\Delta p)_{2}=2 m v\left(\sin 45^{\circ}\right)$
Ratio $=\frac{2 m v}{2 m v \sin 45^{\circ}}=\frac{\sqrt{2}}{1}$

Question: The electrical permittivity of dielectric varies with x as:
$\varepsilon=\varepsilon_{0}\left[1+\frac{k x}{d}\right] ; 0 \leq x \leq \frac{d}{2}$
$=\varepsilon_{0}\left[1+\frac{k(d-x)}{d}\right] ; \frac{d}{2} \leq x \leq d$

If the area of the plates in A then find capacitance of capacitor.

Options:

(a) $\frac{k \varepsilon_{0} A}{2 d}$
(b) $\frac{k \varepsilon_{0} A}{2 d} \ln \left[1+\frac{k}{2}\right]$
(c) $\frac{k \varepsilon_{0} A}{2 d} \ln \left[2+\frac{k}{2}\right]$
(d) $\left(1+\frac{k}{2}\right) \frac{\varepsilon_{0} A}{2}$

Answer: (b)
Solution:
$c_{e q}=\frac{\varepsilon_{0} A}{\frac{d x}{k_{1}}+\frac{d x}{k_{2}}+\frac{d x}{k_{3}} \ldots \ldots}$
Let $m=\frac{d x}{k_{1}}+\frac{d x}{k_{2}}+\frac{d x}{k_{3}} \ldots \ldots$
$m=\int_{0}^{d / 2} \frac{d x}{\left[1+\frac{k x}{d}\right]^{d / 2}}+\int_{d+\frac{k(d-x)}{d}}^{d x}$
$=\int_{0}^{d / 2} \frac{d d x}{d+k x}+\int_{d / 2}^{d} \frac{d d x}{d+k d-k x}$
$=\left.\frac{d}{k} \ln (d+k x)\right|_{0} ^{d / 2}+-\left.\frac{d}{k} \ln (d+k d-k x)\right|_{d / 2} ^{d}$
$=\frac{2 d}{k} \ln \left(1+\frac{k}{2}\right)$
$c_{e q}=\frac{k \varepsilon_{0} A}{2 d} \ln \left[1+\frac{k}{2}\right]$

Question: A particle tied to string of length 0.5 m is given a velocity $3 \mathrm{~ms}^{-1}$ at its bottom point while undergoing vertical circular motion. What will be its speed when it makes an angle of 60° with the lower vertical.

Options:

(a) $1.5 \mathrm{~m} / \mathrm{s}$
(b) $2.5 \mathrm{~m} / \mathrm{s}$
(c) $2 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(d) $2 \mathrm{~m} / \mathrm{s}$

Answer: (d)

Solution:

Applying energy conservation
$\frac{1}{2} m v^{2}+m g\left(L-L \cos 60^{\circ}\right)=\frac{1}{2} m u^{2}$
$\Rightarrow v^{2}=u^{2}-2 g L\left(1-\frac{1}{2}\right)=u^{2}-g L$
$\Rightarrow v=\sqrt{3^{2}-10 \times 0.5}=\sqrt{4}=2 \mathrm{~m} / \mathrm{s}$

Question: Half life time of Gold is 3 days. Find the activity of a sample of 2 mg of Gold.

Options:

(a) 85 curie
(b) 594 curie
(c) 441 curie
(d) 121 curie

Answer: (c)

Solution:

$T_{1 / 2}=3$ days
$=3 \times 24 \times 60 \times 60 \mathrm{sec}$
$m=2 m g=2 \times 10^{-3} g$
$M=196.96$
$N=\frac{m}{M} \times$ Avogadro's number
$=2 \times 10^{-3} \times 6.0233 \times 10^{23}$ atoms
Activity of the sample,

$$
\begin{aligned}
& R=\lambda N=\frac{0.693}{T_{1 / 2}} N \\
& =\frac{0.693 \times 2 \times 10^{-3} \times 6.023 \times 10^{23}}{3 \times 24 \times 60 \times 60 \times 196.96} \\
& =163.36 \times 10^{11} \mathrm{~Bq} . \\
& =\frac{163.36 \times 10^{11}}{3.7 \times 10^{10}} \text { curie }=441 \text { curie }
\end{aligned}
$$

Question: Two springs having constant, k and 4 k are connected in series and then connected to 2 masses, 200 gm and 800 gm at each end. Find angular frequency of their oscillation if $k=20 \mathrm{~N} / \mathrm{m}$.

Options:

(a) $10 \mathrm{rad} / \mathrm{sec}$
(b) $20 \mathrm{rad} / \mathrm{sec}$
(c) $5 \mathrm{rad} / \mathrm{sec}$
(d) $40 \mathrm{rad} / \mathrm{sec}$

Answer: (a)
Solution:
$k_{e q}=\frac{k_{1} k_{2}}{k_{1}+k_{2}}=\frac{k \cdot 4 k}{k+4 k}=0.8 k$
$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}=\frac{200 \times 800}{200+800}=160 \mathrm{~g}$
$\omega=\sqrt{\frac{k_{e q}}{\mu}}=\sqrt{\frac{0.8 \times 20 \mathrm{~N} / \mathrm{m}}{0.160 \mathrm{~kg}}}$
$=10 \mathrm{rad} / \mathrm{s}$

Question: In column (I) different orientation of 3 vectors are given and in column (II) magnitude of resultant of vectors is given

Column (I)	Column (I)
	A
	Zero

(R)

Options:

(a) $P \rightarrow 1, Q \rightarrow 2, R \rightarrow 3, S-4$
(b) $P \rightarrow 2, Q \rightarrow 3, R \rightarrow 4, S-1$
(c) $P \rightarrow 2, Q \rightarrow 3, R \rightarrow 1, S-4$
(d) $P \rightarrow 3, Q \rightarrow 2, R \rightarrow 4, S-1$

Answer: (b)

Solution:

(P)

Resultant $=0$
(Q)

(r)

Resultant $=2 \sqrt{2}$
So, $P \rightarrow 2, Q \rightarrow 3, R \rightarrow 4, S-1$

Question: If position vector of a particle is given by: $\vec{r}=10 \alpha t^{2} \hat{i}+[5 \beta t-5] \hat{j}$
Find time when its angular momentum about origin is O.

Options:

(a) β
(b) $\frac{1}{\beta}$
(c) $\frac{2}{\beta}$
(d) $\frac{\beta}{2}$

Answer: (c)
Solution:
$\vec{r}=10 \alpha t^{2} \hat{i}+[5 \beta t-5] \hat{j}$
$\vec{v}=\frac{d \vec{r}}{d t}=20 \alpha t \hat{i}+5 \beta \hat{j}$
$\vec{L}=\vec{r} \times \vec{p}=[\vec{r} \times m \vec{v}]=m[\vec{r} \times \vec{v}]$
For constant m
When $\vec{L}=0$
$\Rightarrow\left[10 \alpha t^{2} \hat{i}+[5 \beta t-5] \hat{j}\right] \times[20 \alpha t \hat{i}+5 \beta \hat{j}]=0$
$\Rightarrow\left(10 \alpha t^{2} \cdot 5 \beta\right) \hat{k}+[20 \alpha t(5 \beta t-5)]-\hat{k}=0$
$\Rightarrow 10 \alpha t^{2} \cdot 5 \beta=20 \alpha t[5 \beta t-5]$
$\Rightarrow 5 \beta t=2(5 \beta t-5)$
$\Rightarrow 10=5 \beta t$
$\Rightarrow t=\frac{2}{\beta}$

Question: Two wires of equal dimensions and Young's modulus Y_{1} and Y_{2} are connected end to end. What is the equivalent Young's modulus for the combination

Options:

(a) $\frac{Y_{1}+Y_{2}}{2}$
(b) $\sqrt{Y_{1} Y_{2}}$
(c) $\frac{2 Y_{1} Y_{2}}{\left(Y_{1}+Y_{2}\right)}$
(d) $\sqrt{\frac{Y_{1}^{2} Y_{2}^{2}}{2}}$

Answer: (c)

Solution:

$Y=\frac{F}{A}\left(\frac{L}{\Delta L}\right)$
$\Rightarrow F=\left(\frac{Y A}{L} \Delta L\right)$
$K_{1}=\frac{Y_{1} A}{L}$
$K_{2}=\frac{Y_{2} A}{l}$
$K_{\text {net }}=\frac{Y_{\text {net }} A}{2 L} \quad[\therefore$ total length $=2 \mathrm{~L}]$
In series $K_{\text {net }}=\frac{K_{1} K_{2}}{K_{1}+K_{2}}$
$\Rightarrow \frac{\left(\frac{Y_{1} A}{L}\right)\left(\frac{Y_{2} A}{L}\right)}{\left(\frac{Y_{1} A}{L}\right)+\left(\frac{Y_{2} A}{L}\right)}=\frac{\left(Y_{\text {net }}\right) A}{2 L}$
$\Rightarrow Y_{\text {net }}=\frac{2 Y_{1} Y_{2}}{Y_{1}+Y_{2}}$

Question: For a radioactive sample, time taken for quarter of the sample to decay is T_{1} and time taken for half the sample to decay is T_{2}. Find the value of $T_{2}-T_{1}$

Options:

(a) $\frac{1}{\lambda} \ln \left(\frac{3}{2}\right)$
(b) $\lambda\left(\ln \left(\frac{3}{2}\right)\right)$
(c) $\frac{1}{\lambda} \ln \left(\frac{2}{3}\right)$
(d) $\lambda \ln \left(\frac{2}{3}\right)$

Answer: (a)

Solution:

$N=N_{0} e^{-\lambda t}$
$3 \frac{N_{0}}{4}=N_{0} e^{-\lambda T_{1}}$
$\Rightarrow e^{-\lambda T_{1}}=\frac{3}{4} \ldots$ (i)
$\frac{N_{0}}{2}=N_{0} e^{-\lambda T_{2}}$
$\Rightarrow e^{-\lambda T_{2}}=\frac{1}{2}$..
Dividing equation (i) and (ii)
$e^{-\lambda\left(T_{1}-T_{2}\right)}=\frac{2 \times 3}{4}$
Taking natural \log on both sides
$-\lambda\left(T_{1}-T_{2}\right)=\ln \left(\frac{3}{2}\right)$
$T_{2}-T_{1}=\frac{1}{\lambda} \ln \left(\frac{3}{2}\right)$

Question: A bulb rated $200 \mathrm{~W}, 100 \mathrm{~V}$ is connected to 200 V supply. What external resistance should be connected in series to have same power as earlier?

Options:

(a) 100Ω
(b) 50Ω
(c) 10Ω
(d) 5Ω

Answer: (b)

Solution:

Rated power of the bulb is 200 W and operating voltage is 100 V .
$I=\frac{P}{V}=\frac{200}{100}=2 \mathrm{~A}$
$R=\frac{V}{I}=\frac{100}{2}=50 \Omega$
When this bulb is connected in 200 V supply, we need to ensure the current passing through this bulb is 2 A by connecting additional resistance
Total resistance required to get 2 A from 200 V supply $=200 / 2=100 \Omega$
Since resistance of bulb is 50Ω, we need to add additional 50Ω resistance in series.

Question: Water drops are coming out of a tap as constant rate. A falling drop is observed at $4^{\text {th }}$ second after fall. Distance between that drop and next drop is 34.3 m . Find the rate of water drops coming out of $\operatorname{tap}(d r o p s / s e c)\left[g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right]$

Options:

(a) 2
(b) 1
(c) 1.5
(d) 3

Answer: (b)

Solution:

Distance moved by $1^{\text {st }}$ drop in 4 second
$S_{1}=\frac{1}{2} \times 9.8 \times 4^{2}$
$S_{1}=9.8 \times 8=78.4 m$
Distance moved by $2^{\text {nd }}$ drop
$S_{2}=78.4-34.3$
$S_{2}=44.1 m$
$44.1=\frac{1}{2} 9.8 \times t^{2}$
$\frac{88.2}{9.8}=t^{2}$
$t=3 \mathrm{sec}$
That means $2^{\text {nd }}$ drop fall 1 second after the first drop.
So, water drops coming out of tap at $1 \mathrm{drop} / \mathrm{sec}$.

Question: In a potentiometer setup, EMF of primary cell is 6 V and internal resistance is 20Ω. The potentiometer wire is of length 10 m having $0.1 \Omega / \mathrm{cm}$. This setup is used to find EMF of a cell which is balanced at 5.5 m mark. Find EMF of the cell.

Options:

(a) 2.75 V
(b) 2.25 V
(c) 2.5 V
(d) 3 V

Answer: (a)
Solution:
$I=\frac{V}{R}=\frac{6}{(20+0.1 \times 100 \times 10)}=\frac{6}{120} \mathrm{~A}$
$E M F=I R^{\prime}=\frac{1}{120} \times(0.1 \times 100 \times 5.5)$
$E M F=\frac{6}{120} \times 55=2.75 \mathrm{~V}$

Question: A nucleus of mass 4 m disintegrates into two daughter nuclei of mass m and 3 m . Find the ratio of their respective De Broglie wavelength?

Options:

(a) $1: 3$
(b) $3: 1$
(c) $1: \sqrt{3}$
(d) $1: 1$

Answer: (d)

Solution:

$P_{i}=P_{f}=0$
$0=P_{1}-P_{2}$
$P_{1}=P_{2}$
$\lambda=\frac{h}{P} \Rightarrow \lambda_{1}=\frac{h}{P_{1}}$
$\lambda_{2}=\frac{h}{P_{2}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{1}{1}=1: 1$

Question: In a YDSE setup, the distance between the slits varies as $d=d_{0}+A \sin \omega t$. What is the difference between the maximum and minimum fringe width?

Options:

(a) $\frac{2 \lambda A D}{d_{0}^{2}}$
(b) $\frac{2 \lambda A D}{d_{0}^{2}-A^{2}}$
(c) $\frac{2 \lambda A D}{d_{0}^{2}+A^{2}}$
(d) $\frac{2 \lambda d_{0} D}{d_{0}^{2}-A^{2}}$

Answer: (b)

Solution:

Fringe width $(\beta)=\frac{\lambda D}{d}$
$\beta=\frac{\lambda D}{d_{0}+A \sin \omega t}$
$\beta_{\text {max }}=\frac{\lambda D}{d_{0}-A}$
$\beta_{\min }=\frac{\lambda D}{d_{0}+A}$
$\beta_{\text {max }}-\beta_{\text {min }}=\frac{2 \lambda A D}{d_{0}^{2}-A^{2}}$

Question: Temperature vs time graphs are given below for 2 substances. Compare specific heat capacity.

Options:

(a) $S_{A}>S_{B}$
(b) $S_{B}>S_{A}$
(c) $S_{A}=S_{B}$
(d) Can't be determined

Answer: (b)

Solution:

$C=\frac{Q}{m \Delta T}$
Where, $\mathrm{C}=$ specific heat capacity
Now if mass and energy given are same
Then $C \propto \frac{1}{\Delta T}$
ΔT in A in $3 \mathrm{sec}=120^{\circ}$
ΔT in B in $6 \mathrm{sec}=90^{\circ}$
As we can see temperature of A is rising faster as compared to B for the same amount of energy given. We can say
$C_{B}>C_{A}$
Or $S_{B}>S_{A}$

Question: x and y are the axes along the diameter of a disk of mass m and radius R . z -axis is perpendicular to plane of the disk.
Assertion: Radius of gyration is same about all three axes.
Reason: All taxes are symmetry axes.

Options:
(a) Assertion and Reason both are correct and Reason is correct explanation for assertion
(b) Assertion and Reason both are correct but Reason doesn't explanation assertion
(c) Assertion is right and Reason is wrong
(d) Assertion is wrong and Reason is right

Answer: (d)

Solution:

Assertion: Radius of gyration is same about all three axes.
$K_{x}=\frac{R}{2} \quad K_{y}=\frac{R}{2} \quad K_{z}=\frac{R}{\sqrt{2}}$
As $m K^{2}=I$
$K=\sqrt{\frac{I}{m}}$
So, assertion is wrong.
Reason: All axes are symmetric axes.
Reason is true as
About x, y and z axes object is symmetry.
Question: A ball of mass 2 kg moving with $4 \mathrm{~m} / \mathrm{s}$ collides elastically with a stationary ball. If it continues to move in original direction with $\frac{1}{4}^{\text {th }}$ of its original velocity. Find velocity of centre of Mass of system.

Options:

(a) $3 \mathrm{~m} / \mathrm{s}$
(b) $\frac{2}{5} \mathrm{~m} / \mathrm{s}$
(c) $\frac{5}{2} \mathrm{~m} / \mathrm{s}$
(d) $2 \mathrm{~m} / \mathrm{s}$

Answer: (c)
Solution:
$m_{1}=2 \mathrm{~kg}$
$u_{1}=4 \mathrm{~m} / \mathrm{s}$
$e=1$
$v_{1}=1 \mathrm{~m} / \mathrm{s}$
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$
$2 \times 4+0=2 \times 1+m_{2} v_{2}$
$m_{2} v_{2}=6 \mathrm{kgm} / \mathrm{s} \ldots$ (i)
$\frac{v_{2}-v_{1}}{u_{1}-u_{2}}=1$
$\frac{v_{2}-1}{4}=1$
$v_{2}=5 \mathrm{~m} / \mathrm{s}$.
From eq (i) and (ii)
$m_{2}=\frac{6}{5} \mathrm{~kg}$
$v_{\text {com }}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}$
$=\frac{2 \times 1+\frac{6}{5} \times 5}{2+\frac{6}{5}}$
$=\frac{8 \times 5}{16}=\frac{40}{16}=\frac{5}{2} \mathrm{~m} / \mathrm{s}$

Question: A gas has $C_{P}-C_{V}=R$ at temperature $\mathrm{T}=\mathrm{P}$ and $C_{P}-C_{V}=1.1 \mathrm{R}$ at temperature T = Q . Then

Options:

(a) $P=Q$
(b) $P>Q$
(c) $\mathrm{P}<\mathrm{Q}$
(d) None of these

Answer: (b)

Solution:

Since we know that, $C_{p}-C_{v}=n R$
Therefore, at temperature P has lesser number of moles of gas than at temperature Q .
So, temperature in state P will be greater than the temperature in state Q
Since, $T \propto \frac{1}{n}$
So, $P>Q$

JEE-Main-25-07-2021-Shift-1 (Memory Based)

CHEMISTRY

Question: Which of the following gives CO_{2} on reaction with NaHCO_{3} ?

Options:

(a) $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+} \mathrm{OH}^{-}$
(b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(c) Benzene Diazonium +HCl
(d) Acetic acid

Answer: (d)
Solution: Carboxylic acids and enols react with sodium bicarbonate to liberate carbon dioxide.

Question: Which of the following do not exist?
Options:
(a) $\mathrm{SiF}_{6}{ }^{2-}$
(b) $\mathrm{GeCl}_{6}{ }^{2-}$
(c) $\mathrm{Sn}(\mathrm{OH})_{6}{ }^{2-}$
(d) $\mathrm{SiCl}_{6}{ }^{2-}$

Answer: (d)
Solution: $\mathrm{SiF}_{6}{ }^{2-}$ is known to be existed because of small size of F .
As we go down the group in halides their existence is less stable because of large size of halogen that is the reason why $\mathrm{SiCl}_{6}{ }^{2-}$ do not exist.

Question: Which of the following give para Bromination on phenol as a major product.

Options:

(a) $\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$
(b) $\mathrm{CS}_{2} / \mathrm{Br}_{2}$
(c) $\mathrm{CHCl}_{3} / \mathrm{Br}_{2}$
(d) Bromine water

Answer: (b), (c)

Solution:

Product

Question: Which of the following is water soluble protein?

Options:

(a) Albumin
(b) Collagen
(c) Myosin
(d) Fibrin

Answer: (a)
Solution: Albumin is water soluble protein.
Albumin is a protein that is produced in the liver. Albumin enters the bloodstream where it helps carry vitamins, enzymes, and other important substances.

Question: Which of the following is leached out from the extraction of Al from Bauxite? Options:
(a) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(b) Al
(c) AlN
(d) $\mathrm{Al}_{2} \mathrm{~S}_{3}$

Answer: (a)

Solution: in the leaching process the bauxite ore is made to digest with a concentrated solution of NaOH that produces a complex named sodium aluminate. When this complex is made to bear CO 2 , a hydrated compound that is hydrated alumina is precipitated.

Question: In the complete combustion of Butane, 72 g of water is given out. How much Butane was there?

Options:

(a) 50 g
(b) 54 g
(c) 46.4 g
(d) 44.6 g

Answer: (c)

Solution:

$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
116 g butane gives 180 g water
72 g water will get release by $=46.4 \mathrm{~g}$
Question: Assertion (A): Primary aromatic amine cannot be Gabriel phthalimide reaction.
Reason (R): Primary aromatic amine cannot be produced by nucleophilic substitution reaction
Options:
(a) A - Both A and R are true and R is the correct explanation of A
(b) B - Both A and R are true but R is not the correct explanation of A
(c) $\mathrm{C}-\mathrm{A}$ is true but R is false
(d) $\mathrm{D}-\mathrm{A}$ is false but R is true

Answer: (a)
Solution: During Gabriel phthalimide synthesis, the reaction between phthalimide and ethanolic potassium hydroxide gives potassium salt of phthalimide.

The salt on heating with alkyl halide followed by alkaline hydrolysis gives corresponding primary amine.
Aromatic primary amines cannot be prepared by Gabriel phthalimide synthesis as aryl halides do not undergo nucleophilic substitution with the salt formed by phthalimide.

Question: Arrange the following in the increasing order of oxidation state: $\mathrm{CrO}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5}$, $\mathrm{MnO}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$
Options:
(a) $\mathrm{Fe}_{2} \mathrm{O}_{3}<\mathrm{MnO}_{2}<\mathrm{V}_{2} \mathrm{O}_{5}<\mathrm{CrO}_{3}$
(b) $\mathrm{MnO}_{2}<\mathrm{Fe}_{2} \mathrm{O}_{3}<\mathrm{CrO}_{3}<\mathrm{V}_{2} \mathrm{O}_{5}$
(c) $\mathrm{Fe}_{2} \mathrm{O}_{3}<\mathrm{MnO}_{2}<\mathrm{CrO}_{3}<\mathrm{MnO}_{2}$
(d) $\mathrm{MnO}_{2}<\mathrm{Fe}_{2} \mathrm{O}_{3}<\mathrm{CrO}_{3}<\mathrm{Fe}_{2} \mathrm{O}_{3}$

Answer: (a)
Solution:
$\mathrm{CrO}_{3} \quad \mathrm{Cr}^{+6}$
$\mathrm{V}_{2} \mathrm{O}_{5} \quad V^{+5}$
$\mathrm{MnO}_{2} \quad \mathrm{Mn}^{+4}$
$\mathrm{Fe}_{2} \mathrm{O}_{3} \quad \mathrm{Fe}^{+3}$

Question: Which of the following is not used in drycleaning?
Options:
(a) $\mathrm{H}_{2} \mathrm{O}_{2}$
(b) CCl_{4}
(c) CO_{2}
(d) $\mathrm{C}_{2} \mathrm{Cl}_{4}$

Answer: (b)

Solution:

Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is an oxidizing agent that can be used as laundry.
Tetrachloroethylene is the most used chemical solvent in dry cleaning process.
Liquid carbon dioxide cleaning is a method that uses pressurized liquid CO_{2} in place of perc, in combination with other cleaning agents.

Question: S1 : None of the alkaline earth metal hydroxide are soluble in alkaline solution S2: The solubility of alkaline earth metal hydroxide decreases down the group.
True or False type

Options:

(a) Both S1 and S2 are true
(b) Both S1 and S2 are false
(c) S 1 is true but S 2 is false
(d) S 1 is false but S 2 is true

Answer: (b)

Solution: Beryllium hydroxide dissolves in excess NaOH , So this is due to the formation of a complex, $\mathrm{Be}(\mathrm{OH})_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2}\left[\mathrm{Be}(\mathrm{OH})_{4}\right]$
Solubility of alkaline earth metal hydroxide increase with increasing atomic number from $\mathrm{Mg}(\mathrm{OH})_{2} \mathrm{To} \mathrm{Ba}(\mathrm{OH})_{2}$
$\rightarrow S_{1}$ is wrong
$\rightarrow S_{2}$ is wrong
Question: Which of the following complexes show attraction in external magnetic field?

Options:

(a) $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}$
(b) $\mathrm{Ni}(\mathrm{CO})_{4}$
(c) $\mathrm{Ni}(\mathrm{CN}) 4^{2-}$
(d) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$

Answer: (d)

Solution:

$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-} \Rightarrow d^{6} \rightarrow$ Strong field all paired electrons.
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \Rightarrow d^{10} \rightarrow$ Strong field all paired electrons
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \Rightarrow d^{8} \rightarrow$ Strong field all paired electrons
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \Rightarrow d^{5} \rightarrow$ weak field 5 unpaired electrons
Question: Decreasing order of ionic radii : $\mathrm{Al}^{3+} ; \mathrm{K}^{+} ; \mathrm{Na}^{+} ; \mathrm{Mg}^{2+}$
Options:
(a) $\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{+3}$
(b) $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{+3}$
(c) $\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{Al}^{+3}>\mathrm{Mg}^{2+}$
(d) $\mathrm{Al}^{+3}>\mathrm{K}^{+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}$

Answer: (a)

Solution:

$\left\{\begin{array}{cccc}\mathrm{Al}^{+3}< & \mathrm{Mg}^{+2}<\quad \mathrm{Na}^{+}< & \mathrm{K}^{+} \\ 53.5 \mathrm{pm} & 72 \mathrm{pm} & 102 \mathrm{pm} & 138 \mathrm{pm}\end{array}\right.$

Question: Number of sigma bonds in $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
Answer: 10.00

Solution:

Question: Empirical formula of an octahedral complex is $\mathrm{CrCl}_{3} .3 \mathrm{NH}_{3} .3 \mathrm{H}_{2} \mathrm{O}$. It precipitates 3 moles of AgCl . Find the secondary valency of the central atom.
Answer: 6.00

Solution:

$$
[\mathrm{Cr} \underbrace{\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}}_{\text {sec. Valenies }}] \mathrm{Cl}_{3}
$$

Question: Correct resonating structure of the given structure

Options:

(a)

(b)

(c)

(d)

Answer: (a)
Solution:

Question: Identify the polymer.

Options:

(a) Novalac
(b) Neoprene
(c) Buna N
(d) Nylon

Answer: (a)

Solution:

Question: X Solid gets converts into X liquid, X liquid gets converts into X gas . Enthalpy of fusion of solid $X=2.8 \mathrm{~kJ} / \mathrm{mol}$, and enthalpy of vaporization of $\mathrm{X}=98.2 \mathrm{~kJ} / \mathrm{mol}$, The enthalpy of sublimation is:
Answer:
Solution:
$X_{(s)} \longrightarrow X_{\text {liq }} \xrightarrow{\Delta H_{u p p}=98.2 \mathrm{kj} / \mathrm{mole}} X_{(g a s)}$
$\Delta H_{\text {Fusion }}=2.8 \mathrm{~kJ} /$ mole
$\Delta H_{\text {fusion }}+\Delta H_{\text {vap }}=2.8+98.2=101 \mathrm{~kJ} / \mathrm{mol}$
Question: Bond dissociation enthalpy of $\mathrm{H}\left(\mathrm{E}_{\mathrm{H}}\right)$ and bond dissociation enthalpy of deuterium (Ed) are related as:

Options:

(a) $\mathrm{EH}=\mathrm{ED}$
(b) $\mathrm{EH}=1 / 2 \mathrm{ED}$
(c) $\mathrm{EH}=2 \mathrm{ED}$
(d) $\mathrm{EH} \sim \mathrm{ED}-7.5$

Answer: (d)

Solution: Bond dissociation enthalpy

$$
\underset{443.35 \mathrm{kj} / \mathrm{mol}}{\mathrm{D}_{2}}>\underset{435.88 \mathrm{kj} / \mathrm{mol}}{\mathrm{H}_{2}}
$$

Question:

Options:

(a)

(b)

(c)

(d) None of these

Answer: (a)

Solution:

Question: Product of which of the following reaction will not give Hinsberg reagent? Options:
(a)

(b)

(c)

(d)

Answer: (d)

Solution:

Question: Fe^{2+} reacts with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium. Volume of $\mathrm{Fe}^{2+}=10 \mathrm{ml}$,
Volume of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=15 \mathrm{ml}$. molarity of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=0.1 \mathrm{M}$
Find the molarity of Fe^{2+}
Answer: 0.9M

Solution:

$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \xrightarrow{\mathrm{H}^{+}} 2 \mathrm{Cr}^{+3}$
$+6 \xrightarrow{H^{+}}+3$
$+6 \xrightarrow[\left(n_{1}=6\right)]{ }+3$
$\mathrm{Fe}^{+^{2}} \xrightarrow[\left(n_{2}=1\right)]{ } \mathrm{Fe}^{+3}$
eq. of $K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=e q$.of Fe^{+2}
$N_{1} V_{1}=N_{2} V_{2}$
$n_{1} m_{1} v_{1}=n_{2} m_{2} v_{2}$
$6 \times 0.1 \times 15 \times 10^{-3}=1 \times m_{2} \times 10 \times 10^{-3}$

Question:

Options:

(a)

(b)

(c)

(d)

Answer: (a)

Solution:

Question: $\mathrm{A}+\mathrm{B} \rightleftharpoons 2 \mathrm{C}$
Concentration of $\mathrm{A}=\mathrm{B}=\mathrm{C}$ (initially). If $\mathrm{K}_{\mathrm{c}}=100$, find concentration C at equilibrium?
Answer:
Solution:

$$
A+B \rightleftharpoons 2 C
$$

at
$\begin{array}{cc}a \quad a & a \\ a=\frac{(C)^{2}}{(A)(B)}=1\end{array}$
Reaction will go forward $\left(\mathrm{a}<\mathrm{k}_{\mathrm{c}}\right) \quad\left(\mathrm{k}_{\mathrm{c}}=100\right)$

$$
A+\quad B \rightleftharpoons \quad 2 C
$$

Initially $a \quad a \quad a$
At equilibrium $a-x \quad a-x \quad a+2 x$
Therefore, $\frac{(a+2 x)^{2}}{(a-x)^{2}}=100$
Or, $\frac{(a+2 x)}{(a-x)}=10$
On solving, $a=\frac{12 x}{9}$
$[C]_{e q}=\frac{12 x}{9}+2 x=\frac{30 x}{9}$

Question: Select the correct option for the given graph:
a

b

C

d

Options:

(a) a, c $=$ first order $\& b, d=0$ order
(b) b, d $=$ first order \& a, c $=0$ order
(c) All are first order
(d) All are zero order

Answer: (a)
Solution: For $1^{\text {st }}$ order reaction half life does not depend on concentration but for zero order reaction half life \propto concentration

JEE-Main-25-07-2021-Shift-1 (Memory Based)

MATHEMATICS

Question: $I=\int_{\frac{\pi}{24}}^{\frac{5 \pi}{24}} \frac{d n}{1+\sqrt[3]{\tan 2 x}}$
Options:
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{12}$

Answer: (b)
Solution:
$I=\int_{\frac{\pi}{24}}^{\frac{5 \pi}{24}} \frac{\sqrt[3]{\sin 2 x} d x}{\sqrt[3]{\sin 2 x}+\sqrt[3]{\cos 2 x}}=\int_{\frac{\pi}{24}}^{\frac{5 \pi}{24}} \frac{\sqrt[3]{\cos 2 x} d x}{\sqrt[3]{\sin 2 x}+\sqrt[3]{\cos 2 x}}$
$\therefore 2 I=\int_{\frac{\pi}{24}}^{\frac{5 \pi}{24}} d x=\frac{\pi}{6} \Rightarrow I=\frac{\pi}{12}$

Question: For a parabola, it's vertex is at a distance of 2 units from origin, focus is at distances of 4 units from origin. A pair of tangents are drawn from origin to the parabola which meet it at P and Q . Find area of $\triangle O P Q$ (O : origin).

Options:

(a) 16
(b) 32
(c) $16 \sqrt{2}$
(d) $32 \sqrt{2}$

Answer: (a)

Solution:

$a=2, y^{2}=8(x-2)$
\therefore origin lies on directrix of parabola.
\therefore Area of $\triangle O P Q=\frac{1}{2} \times 2 a \times 4 a=4 a^{2}=16$

Question: If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ellipse passes through $\left(\sqrt{\frac{3}{2}}, 1\right), e=\frac{1}{\sqrt{3}}$. Circle centred at one of the focus and radius $\frac{2}{\sqrt{3}}$. These ellipse $\&$ circle intersect at two points. Find square of the distance between the two points.

Options:

(a) $\frac{4}{3}$
(b) $\frac{2}{3}$
(c) $\frac{16}{3}$
(d) $\frac{32}{3}$

Answer: (c)

Solution:

$e^{2}=1-\frac{b^{2}}{a^{2}} \Rightarrow \frac{b^{2}}{a^{2}}=\frac{2}{3}$
$\frac{3}{2 a^{2}}+\frac{3}{2 a^{2}}=1 \Rightarrow a^{2}=3, b^{2}=2 \Rightarrow \frac{x^{2}}{3}+\frac{y^{2}}{2}=1$
\therefore focus $=(1,1,0)$
\therefore Equation of circle is $(x-1)^{2}+y^{2}=\frac{4}{3}$
$\Rightarrow 3(x-1)^{2}+6 x^{2}=4$
$\Rightarrow x^{2}-6 x+5=0 \Rightarrow x=1,5$
$\therefore P\left(1, \frac{2}{\sqrt{3}}\right), Q=\left(1, \frac{-2}{\sqrt{3}}\right)$
$P Q=\frac{4}{\sqrt{3}} \Rightarrow P Q^{2}=\frac{16}{3}$

Question: $(p \rightarrow q) \wedge(q \rightarrow \sim p)$ is equivalent to

Options:

(a) $\sim p$
(b) p
(c) $\sim q$
(d) q

Answer: (a)

Solution:

$(p \rightarrow q) \wedge(q \rightarrow \sim p)$
$=(\sim p \vee q) \wedge(\sim q \vee \sim p)$
$=\sim p \vee(q \wedge \sim q)$
$=\sim q$

Question: $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$. Find sum of roots that lying in $[0,2 \pi]$

Options:

(a) 8π
(b) 9π
(c) 11π
(d) 12π

Answer: (b)

Solution:

$(\sin x+\sin 3 x)+(\sin 2 x+\sin 4 x)=0$
$2 \sin 2 x \cos x+2 \sin 3 x \cos x=0$
$2 \cos x \cdot 2 \sin \frac{5 x}{2} \cos \frac{5 x}{2}=0$
$\Rightarrow \cos x \cdot \cos \frac{x}{2} \cdot \sin \frac{5 x}{2}=0$
(i) $\cos x=0 \Rightarrow x=\frac{\pi}{2}, \frac{3 \pi}{2}$
(ii) $\cos \frac{x}{2}=0 \Rightarrow x=\pi$
(iii) $\sin \frac{5 x}{2}=0 \Rightarrow x=0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}, 2 \pi$
\therefore sum of roots $=9 \pi$

Question: In An A.P., $S_{3 n}=3 S_{2 n}$. Find $\frac{S_{4 n}}{S_{2 n}}$.
Options:
(a) 2
(b) 4
(c) 6
(d) 8

Answer: (c)

Solution:

$S_{3 n}=3 S_{2 n}$
$\left(\frac{3 n}{2}\right)[2 a+(3 n-1) d]=3\left(\frac{2 n}{2}\right)[2 a+(2 n-1) d]$
$2 a+3 n d-d=4 a+4 n d-2 d$
$2 a=d-n d \Rightarrow d=\frac{2 a}{1-n}$
Now, $\frac{S_{4 n}}{S_{2 n}}=2\left[\frac{2 a+(4 n-1) d}{2 a+(2 n-1) d}\right]=\frac{2 \times 3}{1}=6$

Question: $\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots \frac{1}{a-n b}=\alpha \cdot n+\beta \cdot n^{2}, \frac{b}{a}$ is small such that $\left(\frac{b}{a}\right)^{3} \&$ other higher powers are neglected. Then find r.

Options:

(a) $\frac{b^{2}}{3 a^{3}}$
(b) $\frac{b^{2}+a}{3 a^{2}}$
(c)
(d)

Answer: (a)

Solution:

$\frac{1}{a}\left[\left(1-\left(\frac{b}{a}\right)\right)^{-1}+\left(1-2\left(\frac{b}{a}\right)\right)^{-1}+\left(1-3\left(\frac{b}{a}\right)\right)^{-1}+\ldots\left(1-n\left(\frac{b}{a}\right)\right)^{-1}\right]$
$=\frac{1}{a}\left[\left(1+\frac{b}{a}+\frac{b^{2}}{a^{2}}\right)+\left(1+\frac{2 b}{a}+\frac{4 b^{2}}{a^{2}}\right)+\left(1+\frac{3 b}{a}+\frac{9 b^{2}}{a^{2}}\right)+\ldots ..\right]$
$=\frac{1}{a}\left[n+\frac{n(n+1) b}{2 a}+\frac{n(n+1)(2 n+1)}{6} \frac{b^{2}}{a^{2}}\right]$
\therefore coefficient of $n^{3}=r=\frac{b^{2}}{3 a^{3}}$

Question: If the coefficient middle term of $(1+x)^{20}$ is A and the coefficient of middle terms of $(1+x)^{19}$ are B and C then find $\frac{A}{B+C}$
Answer: 1.00

Solution:

$A={ }^{20} C_{10}, B={ }^{19} C_{9}, C={ }^{19} C_{10}$
$\therefore \frac{A}{B+C}=\frac{{ }^{20} C_{10}}{2 \cdot{ }^{19} C_{9}}=1$

Question: In class 12 there are 8 students, In class 11 there are 6 students, In class 10 there are 5 students. The probability of selecting 10 students, such that there are at least 2 students from each class and at most 5 students from 11 students of class $10 \& 11$ combined is 100 k . Find k.

Answer: 238.00

Solution:

${ }^{5} C_{2}\left[{ }^{6} C_{3} \times{ }^{8} C_{5}+{ }^{6} C_{2} \times{ }^{8} C_{6}\right]+{ }^{5} C_{3}\left[{ }^{6} C_{2} \times{ }^{8} C_{5}\right]$
$=10[1540]+10[840]$
$=23800$
$\therefore k=238$

Question: Find the locus of centroid formed by any point $\mathrm{P} \&$ foci of hyperbola.
$16 x^{2}-9 y^{2}+32 x+36 y-164=0$.
Answer: 1.00

Solution:

$16 x^{2}+32 x-9 y^{2}+36 y=164$
$16\left(x^{2}+2 x\right)-9\left(y^{2}-4 y\right)=164$
$16(x+1)^{2}-9(y-2)^{2}=164+16-36$
$\therefore \frac{(x+1)^{2}}{9}-\frac{(y-2)^{2}}{16}=1$
\therefore Any point on hyperbola is $(-1,3+\sec \theta, 2+4 \tan \theta)$ and foci $=(-1 \pm 5,2)$, i.e.,
$(-6,2) \&(4,2)$
$\therefore A(4,2), B(-6,2), C(-1+3 \sec \theta, 2+4 \tan \theta)$
\therefore Centroid $\Rightarrow\left(\frac{-3+3 \sec \theta}{3}, \frac{6+4 \tan \theta}{3}\right)$
\therefore locus is $(x+1)^{2}-9 \frac{(y-2)^{2}}{16}=1$

Question: Let $S=\left\{n \in N,\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]^{n}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \forall a, b, c, d \in R\right]$. Find number of 2-digit numbers in 5

Answer: 22.00

Solution:

$\left[\begin{array}{ll}0 & i \\ i & 0\end{array}\right]^{n}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
If n is multiple of 4
Thus, 2 digit number which are multiple of 4 are

$$
S=\{12,16,20, \ldots ., 96\}
$$

So, thus, S contains 22 , two digit numbers.

Question: If $\left(1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}} \ldots \infty\right)^{\log _{(025)}\left(\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{3}} \cdots \infty\right)}=l$ then find l^{2}
Answer: 3.00

Solution:

$$
\left(1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\ldots \infty\right)^{\log _{025}\left(1+\frac{1}{3}+\frac{1}{3^{2}+\ldots \infty}\right)}=l
$$

$$
x=\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \infty=\frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{1}{2}=0.5
$$

Also,

$$
y=1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\ldots .
$$

$$
\frac{y}{3}=\frac{1}{3}+\frac{2}{3^{2}}+\frac{6}{3^{3}}+\ldots \ldots
$$

$\frac{2 y}{3}=\frac{4}{3}+\frac{4}{3^{2}}+\frac{4}{3^{3}}+\ldots . \infty=\frac{\frac{4}{3}}{1-\frac{1}{3}}=2$
$\therefore y=3$
$\Rightarrow(3)^{\log _{025}(0.5)}=\sqrt{3}$
$\therefore l^{2}=3$

Question: If $\left[\frac{x+1}{x^{\frac{2}{3}}+1-x^{\frac{1}{3}}}-\frac{x-1}{(x+\sqrt{x})}\right]^{10}$. Find term independent of x.
Answer: 210.00

Solution:

$$
\left[\left(x^{\frac{1}{3}}+1\right)-\frac{\left(x^{\frac{1}{2}}+1\right)}{x^{\frac{1}{2}}}\right]^{10}=\left(x^{\frac{1}{3}}-x^{\frac{-1}{2}}\right)^{10}
$$

$\therefore T_{r+1}={ }^{10} C_{r}\left(x^{\frac{1}{3}}\right)^{r} \cdot\left(-x^{\frac{1}{2}}\right)^{10-r}$
$={ }^{10} C_{r}(-1)^{10-r} \cdot x^{\frac{r}{3}+\frac{r}{2}-5}$
For term independent $\Rightarrow \frac{r}{3}+\frac{r}{2}=5 \Rightarrow r=6$
\therefore Term independent $=T_{7}={ }^{10} C_{6}=210$

Question: $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], a, b, c, d \in\{3,-3,-2,2,1,-1,0\}, f(A)=\operatorname{det}(A)$. Find probability that $f(A)=15$.
Answer: $\frac{16}{7^{4}}$

Solution:

$|A|=a d-b c$
(I) $a= \pm 3, d= \pm 3, b= \pm 2, c=\mp 3 \rightarrow 4$ cases
(II) $a= \pm 3, d= \pm 3, b=\mp 3, c= \pm 2 \rightarrow 4$ cases
(III) $a= \pm 2, d= \pm 3, b=\mp 3, c= \pm 3 \rightarrow 4$ cases
(IV) $a= \pm 3, d= \pm 2, b=\mp 3, c= \pm 3 \rightarrow 4$ cases
\therefore Total favourable cases $=16$
\therefore Probability $=\frac{16}{7^{4}}$

Question: $\vec{p}=(3 \hat{i}+2 \hat{j}+\hat{k}), \vec{q}=(2 \hat{i}+\hat{j}+\hat{k}), \vec{r}$ is perpendicular to both $\vec{p}+\vec{q}$ and $(\vec{p}-\vec{q}),|\vec{r}|=\sqrt{3}, \vec{r}=a \hat{i}+b \hat{j}+c \hat{k}$. Find $|a|+|b|+|c|$.
Answer: 3.00

Solution:

$$
\vec{p}+\vec{q}=5 \hat{i}+3 \hat{j}+2 \hat{k} ; \vec{p}-\vec{q}=\hat{i}+\hat{j}
$$

$$
\begin{aligned}
& \therefore \vec{r}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
5 & 3 & 2 \\
1 & 1 & 0
\end{array}\right|=\lambda(-2 \hat{i}+2 \hat{j}+2 \hat{k}) \\
& |\vec{r}|=2 \lambda \sqrt{3}=\sqrt{3} \Rightarrow \lambda=\frac{1}{2} \\
& \therefore \vec{r}=-\hat{i}+\hat{j}+\hat{k} \\
& \therefore|\bar{a}|+|\vec{b}|+|\bar{c}|=3
\end{aligned}
$$

Question: A spherical balloon of radius 16 m subtends 60° at eye of an observer on the ground. The angle of elevation of centre from the same point of observation is 75°. Find the height of top most point of the balloon.

Answer:

Solution:

$\alpha=60^{\circ}, \beta=75^{\circ}$
$\sin \frac{\alpha}{2}=\frac{r}{O P}=\frac{1}{2}$
$O P=2 r=32$
$\therefore \sin \beta=\frac{O L}{O P} \Rightarrow O L=32 \times \sin 75=8 \sqrt{2}(\sqrt{3}+1)$
\therefore Required Height $=8 \sqrt{2}(\sqrt{3}+1)+16$

Question: $f(x)=\left\{\begin{array}{cl}\mu, & x=2 \\ e^{\frac{\tan (x-2)}{x-[x]}}, & x<2, f(x) \text { is continuous. Find } \mu+\lambda= \\ \frac{\left|x^{2}-5 x+6\right| \lambda}{\left(-x^{2}+5 x-6\right) \mu}, & x>2\end{array}\right.$
Answer: 2.00

Solution:

$e^{\frac{\tan (x-2)}{(x-1)}}=\mu=\frac{\lambda}{\mu}=1$
$\therefore \lambda=\mu=1 \Rightarrow \lambda+\mu=2$

Question: $x^{2}+5 \sqrt{2} x+10=0, P_{n}=\alpha^{n}-\beta^{n}, \frac{P_{17} P_{20}+5 \sqrt{2}}{P_{18} P_{19}+5 \sqrt{2}} \frac{P_{17} P_{19}}{P_{18}^{2}}=$?
Answer: 1.00

Solution:

$$
\begin{aligned}
& x^{2}+5 \sqrt{2} x+10=0 ; P_{n}=\alpha^{n}-\beta^{n} \\
& \frac{P_{17}\left[P_{20}+5 \sqrt{2} P_{19}\right]}{P_{18}\left[P_{19}+5 \sqrt{2} P_{18}\right]}=\frac{P_{17}}{P_{18}}\left[\frac{\left(\alpha^{20}-\beta^{20}\right)+5 \sqrt{2}\left(\alpha^{19}-\beta^{19}\right)}{\left(\alpha^{19}-\beta^{19}\right)+5 \sqrt{2}\left(\alpha^{18}-\beta^{18}\right)}\right] \\
& \Rightarrow \frac{P_{17}}{P_{18}}\left[\frac{-10 \alpha^{18}+10 \beta^{18}}{-10 \alpha^{17}+10 \beta^{17}}\right]=1
\end{aligned}
$$

