FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Wednesday 27 ${ }^{\text {th }}$ July, 2022)

PHYSICS

SECTION-A

1. A torque meter is calibrated to reference standards of mass, length and time each with 5% accuracy. After calibration, the measured torque with this torque meter will have net accuracy of :
(A) 15%
(B) 25%
(C) 75%
(D) 5%

Official Ans. by NTA (B)
Sol. Dimensional formula for Torque
$[\tau]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
Now
Percentage error in torque $=\% \tau=\% \mathrm{M}+2 \% \mathrm{~L}$ 2 \% T
$\% \tau=25 \%$
2. A bullet is shot vertically downwards with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$ from a certain height. Within 10 s , the bullet reaches the ground and instantaneously comes to rest due to the perfectly inelastic collision. The velocity-time curve for total time $\mathrm{t}=20 \mathrm{~s}$ will be : $\left(\right.$ Take $\left.\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(A)

(B)

(C)

(D)

Official Ans. by NTA (A)

TIME : 9:00 AM to 12:00 NOON

TEST PAPER WITH SOLUTION

Sol. $V=-100-10 t$
3. Sand is being dropped from a stationary dropper at a rate of $0.5 \mathrm{kgs}^{-1}$ on a conveyor belt moving with a velocity of $5 \mathrm{~ms}^{-1}$. The power needed to keep belt moving with the same velocity will be :
(A) 1.25 W
(B) 2.5 W
(C) 6.25 W
(D) 12.5 W

Official Ans. by NTA (D)

Sol. \quad Thrust $=\lambda V_{\text {rel }}$
$=2.5 \mathrm{~N}$
Now, Power $=\mathrm{F} \times \mathrm{V}=12.5 \mathrm{~W}$
4. A bag is gently dropped on a conveyor belt moving at a speed of $2 \mathrm{~m} / \mathrm{s}$. The coefficient of friction between the conveyor belt and bag is 0.4 Initially, the bag slips on the belt before it stops due to friction. The distance travelled by the bag on the belt during slipping motion is : [Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{-2}$]
(A) 2 m
(B) 0.5 m
(C) 3.2 m
(D) 0.8 ms

Official Ans. by NTA (B)

Sol. In frame of belt
$\mathrm{a}=\mu \mathrm{g}=4 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{v}=2 \mathrm{~m} / \mathrm{s}, \mathrm{u}=0$
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$\Rightarrow \mathrm{s}=0.5 \mathrm{~m}$
5. Two cylindrical vessels of equal cross-sectional area $16 \mathrm{~cm}^{2}$ contain water upto heights 100 cm and 150 cm respectively. The vessels are interconnected so that the water levels in them become equal. The work done by the force of gravity during the process, is [Take density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\left.\mathrm{g}=10 \mathrm{~ms}^{-2}\right]$
(A) 0.25 J
(B) 1 J
(C) 8 J
(D) 12 J

Official Ans. by NTA (B)

Sol.

$\mathrm{h}=\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{2}$
Now,
$\mathrm{W}=\mathrm{U}_{\mathrm{i}}-\mathrm{U}_{\mathrm{f}}$
$W=\left(\rho A h_{1}\right) g \frac{h_{1}}{2}+\left(\rho A h_{2}\right) g \frac{h_{2}}{2}-\rho A\left(h_{1}+h_{2}\right) g$
$\left(\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{4}\right)$
$\mathrm{W}=\frac{\rho \mathrm{Ag}}{2}\left[\mathrm{~h}_{1}^{2}+\mathrm{h}_{2}^{2}-\frac{\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)^{2}}{2}\right]$
$\mathrm{W}=1 \mathrm{~J}$
6. Two satellites A and B having masses in the ratio 4:3 are revolving in circular orbits of radii 3 r and 4 r respectively around the earth. The ratio of total mechanical energy of A to B is :
(A) $9: 16$
(B) $16: 9$
(C) $1: 1$
(D) $4: 3$

Official Ans. by NTA (B)

Sol. Given that $\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{4}{3}, \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{3}{4}$
Now TE $=\frac{1}{2} \mathrm{mv}^{2}+\left(\frac{-\mathrm{GMm}}{\mathrm{r}}\right)$
but $\frac{\mathrm{mv}^{2}}{\mathrm{r}}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}} \Rightarrow \mathrm{mv}^{2}=\frac{\mathrm{GMm}}{\mathrm{r}}$
$\Rightarrow \mathrm{TE}=-\frac{\mathrm{GMm}}{2 \mathrm{r}} \propto \frac{\mathrm{m}}{\mathrm{r}}$
$\frac{\mathrm{TE}_{1}}{\mathrm{TE}_{2}}=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \cdot \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{4}{3} \times \frac{4}{3}=\frac{16}{9}$
7. If K_{1} and K_{2} are the thermal conductivities L_{1} and L_{2} are the lengths and A_{1} and A_{2} are the cross sectional areas of steel and copper rods respectively such that $\frac{K_{2}}{K_{1}}=9, \frac{A_{1}}{A_{2}}=2, \frac{L_{1}}{L_{2}}=2$. Then, for the arrangement as shown in the figure. The value of temperature T of the steel - copper junction in the steady state will be :

(A) $18^{\circ} \mathrm{C}$
(B) $14{ }^{\circ} \mathrm{C}$
(C) $45^{\circ} \mathrm{C}$
(D) $150{ }^{\circ} \mathrm{C}$

Official Ans. by NTA (C)

Sol.
$\mathrm{T}_{1}=450^{\circ} \mathrm{C} \begin{array}{r}\text { Steel } \\ \mathrm{A}_{1} \\ \mathrm{l}_{1}\end{array}$
$\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\mathrm{K}_{1} \mathrm{~A}_{1}}{\mathrm{l}_{1}}\left(\mathrm{~T}_{1}-\mathrm{T}\right)=\frac{\mathrm{K}_{2} \mathrm{~A}_{2}}{\mathrm{l}_{2}}\left(\mathrm{~T}-\mathrm{T}_{2}\right)$
$\Rightarrow \frac{450-\mathrm{T}}{\mathrm{T}-0}=\frac{\mathrm{K}_{2} \mathrm{~A}_{2} \mathrm{l}_{1}}{\mathrm{~K}_{1} \mathrm{~A}_{1} \mathrm{l}_{2}}=9 \times \frac{1}{2} \times 2$
$\Rightarrow 450-\mathrm{T}=9 \mathrm{~T} \Rightarrow \mathrm{~T}=45^{\circ} \mathrm{C}$
8. Read the following statements :
A. When small temperature difference between a liquid and its surrounding is doubled the rate of loss of heat of the liquid becomes twice.
B. Two bodies P and Q having equal surface areas are maintained at temperature $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. The thermal radiation emitted in a given time by P and Q are in the ratio 1:1.15
C. A carnot Engine working between 100 K and 400 K has an efficiency of 75%
D. When small temperature difference between a liquid and its surrounding is quadrupled, the rate of loss of heat of the liquid becomes twice.
Choose the correct answer from the options given below :
(A) A, B, C only
(B) A, B only
(C) A, C only
(D) B, C, D only

Official Ans. by NTA (A)

Sol. Heat Transfer
A. by Newton's low of colling $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\propto \Delta \mathrm{T}$
B. $\mathrm{H}=\frac{\mathrm{d} \theta}{\mathrm{dt}}=\sigma \mathrm{eAT}^{4} \Rightarrow \frac{\mathrm{H}_{\mathrm{P}}}{\mathrm{H}_{\mathrm{Q}}}=\left(\frac{\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{Q}}}\right)^{4}=\left(\frac{283}{293}\right)^{4}$
$H_{P}: H_{Q}=1(1.03)^{4}=1:(1.03)^{4}=1: 1.15$
$\Rightarrow \mathrm{B}$ is correct
C. $\eta=1-\frac{100}{400}=\frac{3}{4}=75 \%$
D. is wrong as $\frac{\mathrm{d} \theta}{\mathrm{dt}} \propto \Delta \mathrm{T}$
9. Same gas is filled in two vessels of the same volume at the same temperature. If the ratio of the number of molecules is $1: 4$, then
A. The r.m.s. velocity of gas molecules in two vessels will be the same.
B. The ratio of pressure in these vessels will be 1: 4
C. The ratio of pressure will be $1: 1$
D. The r.m.s. velocity of gas molecules in two vessels will be in the ratio of $1: 4$
(A) A and C only
(B) B and D only
(C) A and B only
(D) C and D only

Official Ans. by NTA (C)

Sol. KTG
A. $\mathrm{V}_{\mathrm{Rms}}=\sqrt{\frac{3 R T}{\mathrm{M}_{\mathrm{w}}}} \Rightarrow \mathrm{V}_{\mathrm{Rms}}$ is same
B. $\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}} \Rightarrow B$ is correct

Ans [A \& B only are correct]
10. Two identical positive charges Q each are fixed at a distance of ' 2 a ' apart from each other. Another point charge q_{0} with mass ' m ' is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge q_{0} executes SHM. The time period of oscillation of charge q_{0} will be :
(A) $\sqrt{\frac{4 \pi^{3} \varepsilon_{0} m a^{3}}{q_{0} Q}}$
(B) $\sqrt{\frac{q_{0} Q}{4 \pi^{3} \varepsilon_{0} m a^{3}}}$
(C) $\sqrt{\frac{2 \pi^{2} \varepsilon_{0} m a^{3}}{q_{0} Q}}$
(D) $\sqrt{\frac{8 \pi^{3} \varepsilon_{0} m a^{3}}{q_{0} Q}}$

Official Ans. by NTA (A)

Sol. Electrostatics

$$
\begin{aligned}
& \mathrm{F}=\mathrm{macc}^{\mathrm{n}}=\frac{\mathrm{KQq}_{0}}{(\mathrm{a}-\mathrm{x})^{2}}-\frac{\mathrm{KQq}_{0}}{(\mathrm{a}+\mathrm{x})^{2}} \\
& \mathrm{~m} \mathrm{acc} \\
& \mathrm{n}=\frac{\mathrm{KQq}_{0}[2 \mathrm{a}][2 \mathrm{x}]}{\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)^{2}} \\
& \Rightarrow \mathrm{acc}^{\mathrm{n}} \approx\left(\frac{4 \mathrm{kQq}_{0}}{\mathrm{ma}^{3}}\right) \mathrm{x} \\
& \mathrm{~T}=2 \pi \sqrt{\frac{\pi \varepsilon_{0} \mathrm{ma}^{3}}{\mathrm{Qq}_{0}}} \\
& \mathrm{~T}=\sqrt{\frac{4 \pi^{3} \varepsilon_{0} \mathrm{ma}^{3}}{\mathrm{Qq}_{0}}}
\end{aligned}
$$

11. Two sources of equal emfs are connected in series. This combination is connected to an external resistance R . The internal resistances of the two sources are r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$. If the potential difference across the source of internal resistance r_{1} is zero then the value of R will be
(A) $r_{1}-r_{2}$
(B) $\frac{\mathrm{r}_{1} r_{2}}{\mathrm{r}_{1}+r_{2}}$
(C) $\frac{r_{1}+r_{2}}{2}$
(D) $\mathrm{r}_{2}-\mathrm{r}_{1}$

Official Ans. by NTA (A)

Sol.

$$
\mathrm{I}=\frac{2 \mathrm{E}}{\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{R}}
$$

$\mathrm{IR}=\mathrm{E}-\mathrm{Ir}_{2}$
$I\left(R+r_{2}\right)=E$
$\mathrm{I}=\frac{\mathrm{E}}{\mathrm{R}+\mathrm{r}_{2}}$
$\frac{2 \mathrm{E}}{\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{R}}=\frac{\mathrm{E}}{\mathrm{R}+\mathrm{r}_{2}}$
$2 \mathrm{R}+2 \mathrm{r}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}+\mathrm{R}$
$\mathrm{R}=\mathrm{r}_{1}-\mathrm{r}_{2}$
12. Two bar magnets oscillate in a horizontal plane in earth's magnetic field with time periods of 3 s and 4 s respectively. If their moments of inertia are in the ratio of $3: 2$ then the ratio of their magnetic moments will e :
(A) $2: 1$
(B) $8: 3$
(C) $1: 3$
(D) $27: 16$

Official Ans. by NTA (B)

Sol. $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}_{\mathrm{H}}}}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{2 \pi \sqrt{\frac{\mathrm{I}_{1}}{\mathrm{M}_{1} \mathrm{~B}_{\mathrm{H}}}}}{2 \pi \sqrt{\frac{\mathrm{I}_{2}}{\mathrm{M}_{2} \mathrm{~B}_{\mathrm{H}}}}}=\frac{3}{4}$
$\sqrt{\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \times \frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}=\frac{3}{4}$
$\sqrt{\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}} \times \sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}=\frac{3}{4}$
$\sqrt{\frac{3}{2}} \times \sqrt{\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}}=\frac{3}{4}$
$\frac{3}{2} \times \frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{9}{16}$
$\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=\frac{8}{3}$
13. A magnet hung at 45° with magnetic meridian makes an angle of 60° with the horizontal. The actual value of the angle of dip is
(A) $\tan ^{-1}\left(\sqrt{\frac{3}{2}}\right)$
(B) $\tan ^{-1}(\sqrt{6})$
(C) $\tan ^{-1}\left(\sqrt{\frac{2}{3}}\right)$
(D) $\tan ^{-1}\left(\sqrt{\frac{1}{2}}\right)$

Official Ans. by NTA (A)

Sol. $\tan \theta^{\prime}=\frac{\tan \theta}{\cos \alpha}$
$\theta^{\prime}=60^{\circ}$
$\alpha=45^{\circ}$
$\sqrt{3}=\frac{\tan \theta}{\frac{1}{\sqrt{2}}}$
$\tan \theta=\sqrt{\frac{3}{2}}$
$\theta=\tan ^{-1} \sqrt{\frac{3}{2}}$
14. A direct current of 4 A and an alternating current of peak value 4 A flow through resistance of 3Ω and 2Ω respectively. The ratio of heat produced in the two resistances in same interval of time will be :
(A) $3: 2$
(B) $3: 1$
(C) $3: 4$
(D) $4: 3$

Official Ans. by NTA (B)

Sol.

$\mathrm{H}_{1}=\mathrm{i}^{2} \mathrm{R}_{1} \mathrm{t} \quad \mathrm{H}_{2}=\mathrm{i}_{\mathrm{rms}}^{2} \mathrm{R}_{2} \mathrm{t}\left\{\mathrm{i}_{\mathrm{rms}}=\frac{\mathrm{i}_{0}}{\sqrt{2}}\right\}$
$\mathrm{H}_{1}=16(3) \mathrm{t} \quad \mathrm{H}_{2}=\frac{\mathrm{i}_{0}^{2}}{2} \mathrm{R}_{2} \mathrm{t}$

$$
\mathrm{H}_{2}=16 \mathrm{t}
$$

$$
\mathrm{H}_{1}: \mathrm{H}_{2}=3: 1
$$

15. A beam of light travelling along X -axis is described by the electric field $E_{y}=900 \sin \omega(t-x / c)$. The ratio of electric force to magnetic force on a charge q moving along Y -axis with a speed of $3 \times 10^{7} \mathrm{~ms}^{-1}$ will be :
[Given speed of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$]
(A) $1: 1$
(B) $1: 10$
(C) $10: 1$
(D) $1: 2$

Official Ans. by NTA (C)

Sol. $\quad E_{y}=900 \sin \left(\omega t-\frac{\omega x}{c}\right)$
$\mathrm{E}_{0}=900$

$\mathrm{F}_{\mathrm{E}}=\mathrm{qE} \mathrm{E}_{0}$
$\mathrm{F}_{\mathrm{B}}=\mathrm{qvB}_{0}$
$\frac{\mathrm{F}_{\mathrm{E}}}{\mathrm{F}_{\mathrm{B}}}=\frac{\mathrm{E}_{0}}{\mathrm{vB}_{0}}=\frac{\mathrm{c}}{\mathrm{v}}=\frac{3 \times 10^{8}}{3 \times 10^{7}}=10: 1$
16. A microscope was initially placed in air (refractive index 1). It is then immersed in oil (refractive index 2). For a light whose wavelength in air is λ, calculate the change of microscope's resolving power due to oil and choose the correct option
(A) Resolving power will be $\frac{1}{4}$ in the oil than it
was in the air
(B) Resolving power will be twice in the oil than it was in the air.
(C) Resolving power will be four times in the oil than it was in the air.
(D) Resolving power will be $\frac{1}{2}$ in the oil than it was in the air.
Official Ans. by NTA (C)

Sol. (R.P) $)_{\text {air }}=\frac{2 \sin \theta}{1.22 \lambda}$
$(\text { R.P })_{\text {oil }}=\frac{2 \sin \theta}{1.22 \lambda_{\text {oil }}}=\frac{2 \sin \theta \times \mu}{1.22 \lambda}$
$(\text { R.P })_{\text {oil }}=(\text { R.P })_{\text {air }} \times 2$
17. An electron (mass m) with an initial velocity $\vec{v}=v_{0} \hat{i}\left(v_{0}>0\right)$ is moving in an electric field $\overrightarrow{\mathrm{E}}=-\mathrm{E}_{0} \hat{\mathrm{i}}\left(\mathrm{E}_{0}>0\right)$ where E_{0} is constant. If at $\mathrm{t}=0$ de Broglie wavelength is $\lambda_{0}=\frac{\mathrm{h}}{\mathrm{mv}_{0}}$, then its de Broglie wavelength after time t is given by
(A) λ_{0}
(B) $\lambda_{0}\left(1+\frac{\mathrm{eE}_{0} \mathrm{t}}{\mathrm{mv}_{0}}\right)$
(C) $\lambda_{0} \mathrm{t}$
(D) $\frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}_{0} \mathrm{t}}{\mathrm{mv}_{0}}\right)}$

Official Ans. by NTA (D)

Sol. $\bigodot \longrightarrow \mathrm{V}_{0}$
$\mathrm{E}=-\mathrm{E}_{0} \hat{\mathrm{i}}$
$\lambda_{0}=\frac{\mathrm{h}}{\mathrm{mv}_{0}}$
$\mathbf{v}=\mathbf{v}_{\mathbf{0}}+\frac{\mathrm{eE} \mathrm{E}_{0} \mathrm{t}}{\mathrm{m}}$
$\lambda=\frac{h}{m v}=\frac{h}{m\left(v_{0}+\frac{e E_{0}}{m} t\right)}$
$\lambda^{\prime}=\frac{h}{\operatorname{mv}_{0}\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mv}_{0}} \mathrm{t}\right)}$
$\left.\lambda^{\prime}=\frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}}{0} \mathrm{mv}_{0}\right.} \mathrm{t}\right)$
18. What is the half-life period of a radioactive material if its activity drops to $1 / 16^{\text {th }}$ of its initial value of 30 years?
(A) 9.5 years
(B) 8.5 years
(C) 7.5 years
(D) 10.5 years

Official Ans. by NTA (C)

Sol. $\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$

$$
\begin{aligned}
& \Rightarrow-\lambda \mathrm{t}=\ln \left(\frac{\mathrm{A}}{\mathrm{~A}_{0}}\right) \\
& \Rightarrow-\frac{\ln 2}{\mathrm{t}_{1 / 2}} \times 30=\ln \left(\frac{1}{16}\right) \\
& \Rightarrow-\frac{\ln 2}{\mathrm{t}_{1 / 2}} \times 30=-4 \ln 2 \\
& \Rightarrow \mathrm{t}_{1 / 2}=\frac{30}{4}=7.5 \mathrm{yrs}
\end{aligned}
$$

19. A logic gate circuit has two inputs A and B and output Y. The voltage waveforms of A, B and Y are shown below

The logic gate circuit is
(A) AND gate
(B) OR gate
(C) NOR gate
(D) NAND gate

Official Ans. by NTA (A)

Sol. By making Truth table

A	B	Output
0	0	0
1	1	1
0	1	0
1	0	0

Comparing with output of AND gate

A	B	AND
0	0	0
0	1	0
1	0	0
1	1	1

\Rightarrow logic gate present is AND gate
20. At a particular station, the TV transmission tower has a height of 100 m . To triple its coverage range, height of the tower should be increased to
(A) 200 m
(B) 300 m
(C) 600 m
(D) 900 m

Official Ans. by NTA (D)

Let d be range
$\mathrm{d}^{2}=(\mathrm{h}+\mathrm{R})^{2}-\mathrm{R}^{2}$
$=h^{2}+\mathrm{R}^{2}+2 \mathrm{RH}-\mathrm{R}^{2}$
$\mathrm{d}^{2}=\mathrm{h}^{2}+2 \mathrm{Rh}$
as $R \ggg>h$ then
$\mathrm{d} \approx \sqrt{2 \mathrm{Rh}}$
Now, if coverage is to be increased 3 times
$3 \mathrm{~d}=\sqrt{2 \mathrm{Rh}^{\prime}}$
Divide 2 and $1 \frac{3 d}{d}=\sqrt{\frac{2 R h^{\prime}}{2 R h}}$
$9=\frac{h^{\prime}}{\mathrm{h}}$
$9 \mathrm{~h}=\mathrm{h}$,
If $h=100 \mathrm{~m}$ then tower of height 900 m is required

SECTION-B

1. In meter bridge experiment for measuring unknown resistance ' S ', the null point is obtained at a distance 30 cm from the left side as shown at point D . If R is $5.6 \mathrm{k} \Omega$, then the value of unknown resistance ' S ' will be
\qquad Ω.

Official Ans. by NTA (2400)

Sol. $\frac{S}{30}=\frac{5.6 \times 10^{3}}{70}$
$S=\frac{3}{7} \times 5.6 \times 10^{3}=2400$
2. The one division of main scale of vernier callipers reads 1 mm and 10 divisions of Vernier scale is equal to the 9 divisions on main scale. When the two jaws of the instrument touch each other the zero of the Vernier lies to the right of zero of the main scale and its fourth division coincides with a main scale division. When a spherical bob is tightly placed between the two jaws, the zero of the Vernier scale lies in between 4.1 cm and 4.2 cm and $6^{\text {th }}$ Vernier division coincides with a main scale division. The diameter of the bob will be \qquad $10^{-2} \mathrm{~cm}$

Official Ans. by NTA (412)

Sol. $10 \mathrm{VSD}=9 \mathrm{MSD}$
$1 \mathrm{VST}=.9 \mathrm{MSD}$
L.C. $=.1 \mathrm{~mm}=.01 \mathrm{~cm}$

+ ve zero error $=.4 \mathrm{~mm}$
$=0.04 \mathrm{~cm}$
Negative zero error $=4.1 \mathrm{~cm}+6 \times .01$
$=4.12 \mathrm{~cm}$
$=412 \times 10^{-2} \mathrm{~cm}$

3. Two beams of light having intensities I and 4I interfere to produce a fringe pattern on a screen. The phase difference between the two beams are $\pi / 2$ and $\pi / 3$ at points A and B respectively. The difference between the resultant intensities at the two points is $x I$. The value of x will be \qquad .
Official Ans. by NTA (2)

Sol. $\quad \phi_{\mathrm{A}}=\frac{\pi}{2}$
$\phi_{\mathrm{B}}=\frac{\pi}{3}$
$\mathrm{I}_{\mathrm{A}}=\mathrm{I}+4 \mathrm{I}+2 \sqrt{\mathrm{I}} \sqrt{4 \mathrm{I}} \cos \left(\frac{\pi}{2}\right)$
$=5 \mathrm{I}+4 \mathrm{I}(0)=5 \mathrm{I}$
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}+4 \mathrm{I}+2 \sqrt{\mathrm{I}} \sqrt{4 \mathrm{I}} \cos \left(60^{\circ}\right)$
$=5 \mathrm{I}+4 \mathrm{I} \times \frac{1}{2}=7 \mathrm{I}$
$\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{A}}=7 \mathrm{I}-5 \mathrm{I}=2 \mathrm{I},(\mathrm{x}=2)$
4. To light, a $50 \mathrm{~W}, 100 \mathrm{~V}$ lamp is connected, in series with a capacitor of capacitance $\frac{50}{\pi \sqrt{x}} \mu \mathrm{~F}$, with $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC source. The value of x will be \qquad .

Official Ans. by NTA (3)

Sol. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \Rightarrow \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}$

$$
\left(\mathrm{V}_{\mathrm{R}}\right) \quad\left(\mathrm{V}_{\mathrm{C}}\right)
$$

$200 \mathrm{~V}, 50 \mathrm{~Hz}$

$\mathrm{R}=\frac{100 \times 10^{2}}{50}=\mathrm{R}=200 \Omega$
$\mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{C}}^{2}=\mathrm{V}^{2}$
$(100)^{2}+\mathrm{V}_{\mathrm{C}}^{2}=(200)^{2}$
$\mathrm{i}=\frac{100}{200}=\frac{1}{2} ; \quad \mathrm{V}^{2}=40000$
$\mathrm{V}=\mathrm{I} \times \mathrm{X}_{\mathrm{C}} \quad ; \quad \mathrm{V}_{\mathrm{C}}^{2}=30000$
$\mathrm{V}_{\mathrm{C}}=100 \sqrt{3}$
$X_{C}=200 \sqrt{3}$
$200 \sqrt{3}=\frac{1}{\omega \mathrm{C}}$
$C=\frac{1}{20 \times 50 \times 20 \sqrt{3}}=\frac{50 \times 10^{-6}}{\sqrt{x}}$
$\sqrt{\mathrm{x}}=50 \times 10^{-6} \times 100 \times 200 \sqrt{3}$
$X=3$
5. A 1 m long copper wire carries a current of 1 A . If the cross section of the wire is $2.0 \mathrm{~mm}^{2}$ and the resistivity of copper is $1.7 \times 10^{-8} \Omega \mathrm{~m}$. the force experienced by moving electron in the wire is \qquad $\times 10^{-23}$ N . (charge on electron $=1.6 \times 10^{-19} \mathrm{C}$)

Official Ans. by NTA (136)

Sol. $l=1 \mathrm{~m}$
$\mathrm{i}=1 \mathrm{~A}$
Area $=2 \times 10^{-6}$
$\rho=1.7 \times 10^{-8}$
$\mathrm{R}=\frac{\rho \ell}{\mathrm{A}}=\frac{1.7 \times 10^{-8} \times 1}{2 \times 10^{-5}}=\frac{1.7}{2} \times 10^{-2}$
$\mathrm{v}=\frac{1.7}{2} \times 10^{-2}$
$\mathrm{F}=1.6 \times 10^{-19} \times \frac{1.7}{2} \times 10^{-2}$
$=1.36 \times 10^{-21}$
$=136 \times 10^{-23}$
6. A long cylindrical volume contains a uniformly distributed charge of density $\rho \mathrm{Cm}^{-3}$. The electric field inside the cylindrical volume at a distance $\mathrm{x}=\frac{2 \varepsilon_{0}}{\rho} \mathrm{~m}$ from its axis is \qquad Vm^{-1}

Official Ans. by NTA (1)

$\int E d s \cos 0=\frac{\mathrm{q}}{\varepsilon_{0}}$
$\Rightarrow \mathrm{E} .2 \pi \mathrm{xh}=\frac{\rho \times \pi \mathrm{x}^{2} \mathrm{~h}}{\varepsilon_{0}}$
$\Rightarrow \mathrm{E}=\frac{\rho \mathrm{x}}{2 \varepsilon_{0}}$
$\Rightarrow \mathrm{E}=\frac{\rho}{2 \varepsilon_{0}} \times \frac{2 \varepsilon_{0}}{\rho}=1$
7. A mass 0.9 kg , attached to a horizontal spring, executes SHM with an amplitude A_{1}. When this mass passes through its mean position, then a smaller mass of 124 g is placed over it and both masses move together with amplitude A_{2}. If the ratio $\frac{A_{1}}{A_{2}}$ is $\frac{\alpha}{\alpha-1}$, then the value of α will be \qquad .

Official Ans. by NTA (16)

Sol. $\quad \frac{1}{2} \mathrm{kA}^{2}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}$
$\Rightarrow\left(\frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}\right)^{2}=\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{1024}{900}$
$\Rightarrow \frac{\mathrm{A}_{1}}{\mathrm{~A}_{2}}=\frac{32}{30}=\frac{16}{15}=\frac{16}{16-1}$
$\therefore \alpha=16$
8. A square aluminium (shear modulus is $25 \times 10^{9} \mathrm{Nm}^{-2}$) slab of side 60 cm and thickness 15 cm is subjected to a shearing force (on its narrow face) of $18.0 \times 10^{4} \mathrm{~N}$. The lower edge is riveted to the floor. The displacement of the upper edge is \qquad $\mu \mathrm{m}$.

Official Ans. by NTA (48)

Sol. $\frac{F}{A}=\eta \frac{x}{\ell} \Rightarrow \frac{F \ell}{A \eta}=x$
$\Rightarrow \mathrm{x}=\frac{18 \times 10^{4} \times 60 \times 10^{-2}}{60 \times 10^{-2} \times 15 \times 10^{-2} \times 25 \times 10^{9}}$
$=48 \times 10^{-6} \mathrm{~m}=48 \mu \mathrm{~m}$
9. A pulley of radius 1.5 m is rotated about its axis by a force $F=\left(12 t-3 t^{2}\right) N$ applied tangentially (while t is measured in seconds). If moment of inertia of the pulley about its axis of rotation is 4.5 kg m , the number of rotations made by the pulley before its direction of motion is reversed, will be $\frac{K}{\pi}$. The value of K is \qquad .

Official Ans. by NTA (18)

Sol. $\tau=\mathrm{I} \alpha \Rightarrow\left(12 \mathrm{t}-3 \mathrm{t}^{2}\right) 1.5=4.5 \alpha$
$\Rightarrow \alpha=4 \mathrm{t}-\mathrm{t}^{2}$
$\Rightarrow \frac{\mathrm{d} \omega}{\mathrm{dt}}=4 \mathrm{t}-\mathrm{t}^{2} \Rightarrow \omega=\int_{0}^{\mathrm{t}}\left(4 \mathrm{t}-\mathrm{t}^{2}\right) \mathrm{dt}$
$\Rightarrow \omega=2 t^{2}-t^{3} / 3$

$$
\begin{aligned}
& \text { For } \omega=0=2 \mathrm{t}^{2}-\frac{\mathrm{t}^{3}}{3} \Rightarrow \mathrm{t}^{2}\left(2-\frac{\mathrm{t}}{3}\right)=0 \\
& \Rightarrow \mathrm{t}=0,6 \\
& \frac{\mathrm{~d} \theta}{\mathrm{dt}}=2 \mathrm{t}^{2}-\frac{\mathrm{t}^{3}}{3} \Rightarrow \theta=\int_{0}^{6}\left(2 \mathrm{t}^{2}-\frac{\mathrm{t}^{3}}{3}\right) \mathrm{dt} \\
& =\left[\frac{2 \mathrm{t}^{3}}{3}-\frac{\mathrm{t}^{4}}{12}\right]_{0}^{6} \\
& =6^{3}\left(\frac{2}{3}-\frac{6}{12}\right)=6^{3}\left(\frac{8-6}{12}\right) \\
& =\frac{6^{3}}{6}=36
\end{aligned}
$$

No. of revolutions $=\frac{36}{2 \pi}=\frac{18}{\pi}$
$\therefore \mathrm{K}=18$
10. A ball of mass m is thrown vertically upward. Another ball of mass 2 m is thrown an angle θ with the vertical. Both the balls stay in air for the same period of time. The ratio of the heights attained by the two balls respectively is $\frac{1}{x}$. The value of x is \qquad .

Official Ans. by NTA (1)

Sol. Time of flight is same
\Rightarrow vertical component of velocity is same
$\Rightarrow \mathrm{H}_{\text {max }}$ is same

CHEMISTRY

SECTION-A

1. 250 g solution of D-glucose in water contains 10.8% of carbon by weight. The molality of the solution is nearest to
(Given: Atomic Weights are H, lu; C, $12 \mathrm{u} ; \mathrm{O}, 16 \mathrm{u}$)
(A) 1.03
(B) 2.06
(C) 3.09
(D) 5.40

Official Ans. by NTA (B)

Sol. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow$ Glucose
We know: $\frac{\text { mass of C }}{\text { mass of glucose }}=\frac{72}{180}$
Given: $\% \mathrm{C}=10.8=\frac{\text { mass of } \mathrm{C}}{\text { mass of solution }} \times 100$
$\frac{10.8 \times 250}{100}=$ mass of $\mathrm{C} \Rightarrow$ Mass of $\mathrm{C}=27 \mathrm{gm}$
\therefore mass of glucose $=67.5 \mathrm{gm}$
\therefore moles of glucose $=0.375$ moles
Mass of solvent $=250-67.5 \mathrm{gm}=182.5 \mathrm{gm}$
\therefore Molality $=\frac{0.375}{0.1825}=2.055 \approx 2.06$
2. Given below are two statements.

Statement I : $\mathrm{O}_{2}, \mathrm{Cu}^{2+}$ and Fe^{3+} are weakly attracted by magnetic field and are magnetized in the same direction as magnetic field.
Statement II : NaCl and $\mathrm{H}_{2} \mathrm{O}$ are weakly magnetized in opposite direction to magnetic field.
In the light of the above statements, choose the most appropriate answer form the options given below :
(A) Both Statement I and Statement II are correct.
(B) Both Statement I and Statement II are incorrect.
(C) Statement I is correct but Statement II is incorrect.
(D) Statement I is incorrect but Statement II is correct.

Official Ans. by NTA (A)

TEST PAPER WITH SOLUTION
Sol. $\mathrm{O}_{2}, \mathrm{Cu}^{2+}$ and Fe^{3+} are paramagnetic,
\therefore Weakly attracted by magnetic field.
NaCl and $\mathrm{H}_{2} \mathrm{O}$ are diamagnetic,
\therefore Weakly repelled by magnetic field.
3. Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : Energy of 2s orbital of hydrogen atom is greater than that of 2 s orbital of lithium.
Reason R : Energies of the orbitals in the same subshell decrease with increase in the atomic number
In the light of the above statements, choose the correct answer from the options given below.
(A) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}.
(B) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}.
(C) \mathbf{A} is true but \mathbf{R} is false.
(D) \mathbf{A} is false but \mathbf{R} is true.

Official Ans. by NTA (A)

Sol. Energy of orbitals decreases on increasing the atomic number.
4. Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R. Assertion A : Activated charcoal adsorbs SO_{2} more efficiently than CH_{4}.
Reason R: Gases with lower critical temperatures are readily adsorbed by activated charcoal.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}.
(B) Both \mathbf{A} and \mathbf{R} are correct but \mathbf{R} is NOT the correct explanation of \mathbf{A}.
(C) \mathbf{A} is correct but \mathbf{R} is not correct.
(D) \mathbf{A} is not correct but \mathbf{R} is correct.

Official Ans. by NTA (C)

Sol. SO_{2} is absorbed to a greater extent than CH_{4} on activated charcoal under same conditions.

Gases with higher critical temperature are readily absorbed by activated charcoal.
5. Boiling point of a 2% aqueous solution of a nonvolatile solute A is equal to the boiling point of 8% aqueous solution of a non-volatile solute B. The relation between molecular weights of A and B is.
(A) $\mathrm{M}_{\mathrm{A}}=4 \mathrm{M}_{\mathrm{B}}$
(B) $\mathrm{M}_{\mathrm{B}}=4 \mathrm{M}_{\mathrm{A}}$
(C) $\mathrm{M}_{\mathrm{A}}=8 \mathrm{M}_{\mathrm{B}}$
(D) $\mathrm{M}_{\mathrm{B}}=8 \mathrm{M}_{\mathrm{A}}$

Official Ans. by NTA (B)

Sol. For A : 100 gm solution $\rightarrow 2 \mathrm{gm}$ solute A
\therefore Molality $=\frac{2 / \mathrm{M}_{\mathrm{A}}}{0.098}$
For B: 100 gm solution $\rightarrow 8 \mathrm{gm}$ solute B
\therefore Molality $=\frac{8 / \mathrm{M}_{\mathrm{B}}}{0.092}$
$\because\left(\Delta \mathrm{T}_{\mathrm{B}}\right)_{\mathrm{A}}=\left(\Delta \mathrm{T}_{\mathrm{B}}\right)_{\mathrm{B}}$
\therefore Molality of $A=$ Molality of B
$\therefore \frac{2}{0.098 \mathrm{M}_{\mathrm{A}}}=\frac{8}{0.092 \mathrm{M}_{\mathrm{B}}}$
$\frac{2}{98} \times \frac{92}{8}=\frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{B}}}$
$\frac{1}{4.261}=\frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{B}}}$
$\therefore \mathrm{M}_{\mathrm{B}}=4.261 \times \mathrm{M}_{\mathrm{A}}$
6. The incorrect statement is
(A) The first ionization enthalpy of K is less than that of Na and Li
(B) Xe does not have the lowest first ionization enthalpy in its group
(C) The first ionization enthalpy of element with atomic number 37 is lower than that of the element with atomic number 38.
(D) The first ionization enthalpy of Ga is higher than that of the d-block element with atomic number 30 .

Official Ans. by NTA (D)

Sol. Ionization enthalpy order :
$\mathrm{Li}>\mathrm{Na}>\mathrm{K}$
$\mathrm{He}>\mathrm{Ne}>\mathrm{Ar}>\mathrm{Kr}>\mathrm{Xe}>\mathrm{Rn}$
$\mathrm{Sr}>\mathrm{Rb}$
$\mathrm{Zn}>\mathrm{Ga}$
7. Which of the following methods are not used to refine any metal?
(A) Liquation
(B) Calcination
(C) Electrolysis
(D) Leaching
(E) Distillation

Choose the correct answer from the options given below:
(A) B and D only
(B) A, B, D and E only
(C) B, D and E only
(D) A, C and E only

Official Ans. by NTA (A)

Sol. Calcination and leaching are the methods of concentration of ore and not that of refining.
8. Given below are two statements:

Statement I : Hydrogen peroxide can act as an oxidizing agent in both acidic and basic conditions.

Statement II: Density of hydrogen peroxide at 298 K is lower than that of $\mathrm{D}_{2} \mathrm{O}$.

In the light of the above statements. Choose the correct answer from the options.
(A) Both statement I and Statement II are ture
(B) Both statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Official Ans. by NTA (C)

Sol. Depending on the nature of reducing agent $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as an oxidising agent in both acidic as well as basic medium.

Density of $\mathrm{D}_{2} \mathrm{O}=1.1 \mathrm{~g} / \mathrm{cc}$
Density of $\mathrm{H}_{2} \mathrm{O}_{2}=1.45 \mathrm{~g} / \mathrm{cc}$
9. Given below are two statements:

Statement I : The chlorides of Be and Al have Cl-bridged structure. Both are soluble in organic solvents and act as Lewis bases.

Statement II: Hydroxides of Be and Al dissolve in excess alkali to give beryllate and aluminate ions. In the light of the above statements. Choose the correct answer from the options given below.
(A) Both statement I and Statement II are true
(B) Both statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Official Ans. by NTA (D)

Sol. $\mathrm{Be}_{2} \mathrm{Cl}_{4}$ is lewis acid and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ has complete octet. Be and Al are amphoteric metals therefore dissolve in acid as well as alkaline solution and form beryllate and aluminate ions in excess alkali.
10. Which oxoacid of phosphorous has the highest number of oxygen atoms present in its chemical formula?
(A) Pyrophosphorous acid
(B) Hypophosphoric acid
(C) Phosphoric acid
(D) Pyrophosphoric acid

Official Ans. by NTA (D)

Sol. Pyrophosphorous acid $\rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$.
Hypophosphoric acid $\rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$.
Phosphoric acid $\rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$.
Pyrophosphoric acid $\rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$.
11. Given below are two statements:

Statement I : Iron (III) catalyst, acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and neutral KMnO_{4} have the ability to oxidise I^{-}to I_{2} independently.
Statement II: Manganate ion is paramagnetic in nature and involves $\mathrm{p} \pi-\mathrm{p} \pi$ bonding.
In the light of the above statements, choose the correct answer from the options.
(A) Both statement I and Statement II are ture
(B) Both statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Official Ans. by NTA (B)

Sol. Neutral KMnO_{4} oxidises I^{-}to IO_{3}^{-}
Manganate ion has $d \pi-p \pi$ bonding.
12. The total number of $\mathrm{Mn}=\mathrm{O}$ bonds in $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is
\qquad
(A) 4
(B) 5
(C) 6
(D) 3

Official Ans. by NTA (C)

Sol.

13. Match List I with List II

List I Pollutant	List II Disease /sickness
A. Sulphate ($>500 \mathrm{ppm})$	I. Methemoglobinemia
B. Nitrate ($>50 \mathrm{ppm})$	II. Brown mottling of teeth
C. Lead (>50 ppb)	III. Laxative effect
D. Fluoride (>2 ppm)	IV. Kidney damage

Choose the correct answer from the options given below:
(A) A-IV, B -I, C-II, D-III
(B) A-III, B -I, C-IV, D-II
(C) A-II, B -IV, C-I, D-III
(D) A-II, B -IV, C-III, D-I

Official Ans. by NTA (B)

Sol. A. Sulphate ($>500 \mathrm{ppm}$) - Causes Laxative effect that leads to dehydration
B. Nitrate ($>50 \mathrm{ppm}$) - Causes

Methemoglobinemia, skin appears blue
C. Lead (> 50 ppb) - It damage kidney and RBC
D. Fluoride ($>2 \mathrm{ppm}$) - It Causes Brown mottling of teeth
14. Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A : [6] Annulene. [8] Annulene and cis -[10] Annulene, are respectively aromatic, not-aromatic and aromatic.
[6] Annulene

[8] Annulene

Cis-[10] Annulene

Reason R : Planarity is one of the requirements of aromatic systems.

In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}.
(B) Both \mathbf{A} and \mathbf{R} are correct but \mathbf{R} is NOT the correct explanation of \mathbf{A}.
(C) \mathbf{A} is correct but \mathbf{R} is not correct.
(D) \mathbf{A} is not correct but \mathbf{R} is correct.

Official Ans. by NTA (A)

Sol. Assertion A : Not correct, Reason R : correct

Arom atic
[6] - annulene

[8] - annulene

[10] - annulene

In [10] -Annulene - the hydrogen atoms in the 1 and 6 position interfere with each other and force the molecule out of planarity

all -cis(10)annulene

If this annulene with five cis double bonds were planar, each internal angle would be 144°. Since a normal double bond has bond angle of 120°, this would be from ideal. This compound can be made but it does not adopt a planar conformation and therefore is not aromatic even though it has ten π electrons.
15.

In the above reaction product B is:
(A)

(B)

(C)

(D)

Official Ans. by NTA (A)

Sol.

16. Match List I with List II

List I Polymers	List II Commenrcial names
A. Phenol- formaldehyde resin	I. Glyptal
B. Copolymer of 1,3- butadiene and styrene	II. Novolac
C. Polyester of glycol and phthalic acid	III. Buna-S
D. Polyester of glycol and terephthalic acid	IV. Dacron

Choose the correct answer from the options given below:
(A) A-II, B -III, C-IV, D-I
(B) A-II, B -III, C-I, D-IV
(C) A-II, B -I, C-III, D-IV
(D) A-III, B -II, C-IV, D-I

Official Ans. by NTA (B)

Sol.
(A)

(B)

(C)

(D)

17. A sugar ' X ' dehydrates very slowly under acidic condition to give furfural which on further reaction with resorcinol gives the coloured product after sometime. Sugar ' X ' is
(A) Aldopentose
(B) Aldotetrose
(C) Oxalic acid
(D) Ketotetrose

Official Ans. by NTA (A)

Sol.

Cherry red product (seliwanoff's test)
18. Match List I with List II
List I

Choose the correct answer from the options given below:
(A) A-IV, B -III, C-II, D-I
(B) A-III, B -I, C-II, D-IV
(C) A-III, B -IV, C-I, D-II
(D) A-III, B -I, C-IV, D-II

Official Ans. by NTA (C)

Sol.
(A)

It is morphine use for relief for pain, known for narcotic analgesic
(B)

Chloroxylenol used as an antiseptic
(C)

Phenelzine (Nardil) use as Antidepressant
(D)

Saccharin 550 times sweeter than cane sugar
19. In Carius method of estimation of halogen. 0.45 g of an organic compound gave 0.36 g of AgBr . Find out the percentage of bromine in the compound.
(Molar masses : $\mathrm{AgBr}=188 \mathrm{~g} \mathrm{~mol}^{-1}: \mathrm{Br}=80 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 34.04%
(B) 40.04%
(C) 36.03%
(D) 38.04%

Official Ans. by NTA (A)

Sol. Mass of organic compound $=0.45 \mathrm{gm}$
Mass of AgBr obtained $=0.36 \mathrm{gm}$
\therefore Moles of $\mathrm{AgBr}=\frac{0.36}{188}$
\therefore Mass of Bromine $=\frac{0.36}{188} \times 80=0.1532 \mathrm{gm}$
$\therefore \% \mathrm{Br}$ in compound $=\frac{0.1532}{0.45} \times 100=34.04 \%$
20. Match List I with List II

List I	List II
A. Benzenesulphonyl chloride	I. Test for primary amines
B. Hoffmann bromamide reaction	II. Anti Saytzeff
C. Carbylamine reaction	III. Hinsberg reagent
D. Hoffmann orientation	IV. Known reaction of Isocyanates.

Choose the correct answer from the options given below:
(A) A-IV, B -III, C-II, D-I
(B) A-IV, B -II, C-I, D-III
(C) A-III, B -IV, C-I, D-II
(D) A-IV, B -III, C-I, D-II

Official Ans. by NTA (C)

Sol. (A)

\rightarrow Hinsberg reagent

Benzen sulphonyl chloride
(B) Hoffmann bromamide reaction \rightarrow known reaction of isocynates
$\mathrm{R}-\mathrm{CO}-\mathrm{NH}_{2}+\mathrm{X}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{R}-\mathrm{NH}_{2}+$
$2 \mathrm{NaX}+\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

Intermediate : $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{O}$ (isocyanate)
(C) Carbylamine reaction \rightarrow Test for primary amine
$\mathrm{R}-\mathrm{NH}_{2}$ or $\mathrm{Ar}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \rightarrow \mathrm{RNC}$ or $\mathrm{Ar}-\mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$
(D) Hoffmann orientation \rightarrow Anti saytzeff (Formation of less substituted alkene as major product)

SECTION-B

1. 20 mL of $0.02 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is used for the titration of 10 mL of Fe^{2+} solution in the acidic medium.

The molarity of Fe^{2+} solution is \qquad $\times 10^{-2} \mathrm{M}$. (Nearest Integer)

Official Ans. by NTA (24)

Sol. Eq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=\mathrm{Eq}$. of Fe^{2+}
\Rightarrow (Molarity \times volume \times n.f) of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=$ (molarity \times volume \times n.f) of Fe^{2+}
$\Rightarrow 0.02 \times 20 \times 6=M \times 10 \times 1$
$\Rightarrow \mathrm{M}=0.24$
\Rightarrow Molarity $=24 \times 10^{-2}$
2. $2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

The above reaction has been studied at $800^{\circ} \mathrm{C}$. The related data are given in the table below

Reaction serial number	Initial pressure of H_{2} kPa	Initial Pressure of $\mathrm{NO} /$ kPa	Initial $\left(\frac{-\mathrm{dp}}{\mathrm{dt}}\right) /(\mathrm{kPa} / \mathrm{s})$
1	65.6	40.0	0.135
2	65.6	20.1	0.033
3	38.6	65.6	0.214
4	19.2	65.6	0.106

The order of the reaction with respect to NO is \qquad
Official Ans. by NTA (2)

Sol. On decreasing pressure of NO by a factor of ' 2 ' the rate of reaction decreases by a factor of ' 4 '.
\therefore Order of reaction w.r.t. ' NO ' $=2$
3. Amongst the following the number of oxide(s) which are paramagnetic in nature is
$\mathrm{Na}_{2} \mathrm{O}, \mathrm{KO}_{2}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{ClO}_{2}, \mathrm{NO}, \mathrm{SO}_{2}, \mathrm{Cl}_{2} \mathrm{O}$
Official Ans. by NTA (4)

Sol. $\mathrm{KO}_{2}, \mathrm{NO}_{2}, \mathrm{ClO}_{2}$, NO are paramagnetic.
4. The molar heat capacity for an ideal gas at constant pressure is $20.785 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. The change in internal energy is 5000 J upon heating it from 300 K to 500 K . The number of moles of the gas at constant volume is \qquad [Nearest integer]
(Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Official Ans. by NTA (2)

Sol. $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\mathrm{C}_{\mathrm{v}, \mathrm{m}}+\mathrm{R}$
$\Rightarrow \mathrm{C}_{\mathrm{v}, \mathrm{m}}=20.785-8.314=12.471 \mathrm{~J} \mathrm{k}^{-1} \mathrm{ml}^{-1}$
$\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}} \Delta \mathrm{T}$
$\Rightarrow \mathrm{n}=\frac{5000}{12.471 \times 200}=\frac{25}{12.471} \approx 2$
5. According to MO theory, number of species/ions from the following having identical bond order is \qquad :
$\mathrm{CN}^{-}, \mathrm{NO}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}^{+}, \mathrm{O}_{2}^{2+}$
Official Ans. by NTA (3)

Sol. $\quad \mathrm{CN}^{-}, \mathrm{NO}^{+}, \mathrm{O}_{2}{ }^{2+}$ have bond order $=3$
6. At 310 K , the solubility of CaF_{2} in water is
$2.34 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~mL}$. The solubility product of CaF_{2} is \qquad $\times 10^{-8}(\mathrm{~mol} / \mathrm{L})^{3}$. (Given molar mass : $\left.\mathrm{CaF}_{2}=78 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

Official Ans. by NTA (0)

Sol. Solubility of $\mathrm{CaF}_{2}=\mathrm{S}$ mole/L
$S=\frac{2.34 \times 10^{-3}}{0.1 \times 78}=\frac{2.34}{78} \times 10^{-2}=3 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
$\mathrm{K}_{\mathrm{sp}}\left(\mathrm{CaF}_{2}\right)=4 \mathrm{~S}^{3}=4\left(3 \times 10^{-4}\right)^{3}$
$=108 \times 10^{-12}$
$=0.0108 \times 10^{-8}(\mathrm{~mol} / \mathrm{L})^{3}$
7. The conductivity of a solution of complex with formula $\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{4}$ corresponds to $1: 1$ electrolyte, then the primary valency of central metal ion is \qquad
Official Ans. by NTA (1)

Sol. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
Primary valency $=$ oxidation no. $=+3$
8. In the titration of KMnO_{4} and oxalic acid in acidic medium, the change in oxidation number of carbon at the end point is \qquad
Official Ans. by NTA (1)

Sol. Oxidation state of carbon changes from +3 to +4 .

$$
\begin{aligned}
& 2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\text { dil. }) \rightarrow \\
& \quad \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

9. Optical activity of an enantiomeric mixture is $+12.6^{\circ}$ and the specific rotation of $(+)$ isomer is $+30^{\circ}$. The optical purity is \qquad $\%$

Official Ans. by NTA (42)

Sol.

$\%$ optical purity $=\frac{\text { observed rotation of mixture } \times 100}{\text { rotation of pure enantiomer }}$

$$
=\frac{+12.6^{\circ}}{+30^{\circ}} \times 100=42
$$

10. In the following reaction

The $\%$ yield for reaction I is 60% and that of reaction II is 50%. The overall yield of the complete reaction is \qquad \% [nearest integer]

Official Ans. by NTA (30)

Sol.
(I)

Let initial moles of reactant taken $=\mathrm{n}$

Total moles obtained for benzene sulphonic acid (with \% yield $=60 \%$) $=0.6 \mathrm{n}$
(II)

$\%$ yield $=50 \%$

Moles of benzene sulphonic acid before reaction $\mathrm{II}=0.6 \mathrm{n}$
Moles obtained for phenol (with \% yield = 50\%) =
$0.6 \times 0.5 n=0.3 n$
So over all \% yield of complete reaction $=\frac{0.3 n}{n} \times 100=30$

FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Wednesday 27 $^{\text {th }}$ July, 2022)
TIME: 9: 00 AM to 12: 00 NOON

MATHEMATICS

SECTION-A

1. Let R_{1} and R_{2} be two relations defined on \mathbb{R} by $a \mathrm{R}_{1} b \Leftrightarrow a b \geq 0$ and $a R_{2} b \Leftrightarrow a \geq b$, then
(A) R_{1} is an equivalence relation but not R_{2}
(B) R_{2} is an equivalence relation but not R_{1}
(C) both R_{1} and R_{2} are equivalence relations
(D) neither R_{1} nor R_{2} is an equivalence relation

Official Ans. by NTA (D)

Sol. $\quad R_{1}=\{x y \geq 0, x, y \in R\}$
For reflexive $x \times x \geq 0$ which is true.
For symmetric
If $x y \geq 0 \Rightarrow y x \geq 0$
If $\mathrm{x}=2, \mathrm{y}=0$ and $\mathrm{z}=-2$
Then $x . y \geq 0 \& y . z \geq 0$ but $x . z \geq 0$ is not true
\Rightarrow not transitive relation.
$\Rightarrow R_{1}$ is not equivalence
R_{2} if $a \geq b$ it does not implies $b \geq a$
$\Rightarrow R_{2}$ is not equivalence relation
$\Rightarrow D$
2. Let $f, g: \mathbb{N}-\{1\} \rightarrow \mathbb{N}$ be functions defined by $f(a)=\alpha$, where α is the maximum of the powers of those primes p such that p^{α} divides a, and $g(a)=a+1$, for all $a \in \mathbb{N}-\{1\}$. Then, the function $f+\mathrm{g}$ is
(A) one-one but not onto
(B) onto but not one-one
(C) both one-one and onto
(D) neither one-one nor onto

Official Ans. by NTA (D)

TEST PAPER WITH SOLUTION

Sol. f : $\mathrm{N}-\{1\} \rightarrow \mathrm{N} \quad \mathrm{f}(\mathrm{a})=\alpha$

Where α is max of powers of prime P such that p^{α} divides a. Also $\mathrm{g}(\mathrm{a})=\mathrm{a}+1$
$\therefore \quad \mathrm{f}(2)=1$
$g(2)=3$
$\mathrm{f}(3)=1$
$g(3)=4$
$f(4)=2$
$g(4)=5$
$f(5)=1$
$g(5)=6$
$\Rightarrow \quad \mathrm{f}(2)+\mathrm{g}(2)=4$
$(f(3)+g(3))=5$
$f(4)+g(4)=7$
$f(5)+g(5)=7$
\therefore Many one $f(x)+g(x)$ does not cotain 1
\Rightarrow into function
\therefore Ans. (D) [neither one-one nor onto]
3. Let the minimum value v_{0} of $v=|z|^{2}+|z-3|^{2}+|z-6 i|^{2}$, $z \in \mathbb{C}$ is attained at $\mathrm{z}=\mathrm{z}_{0}$. Then $\left|2 z_{0}^{2}-\bar{z}_{0}^{3}+3\right|^{2}+v_{0}^{2}$ is equal to
(A) 1000
(B) 1024
(C) 1105
(D) 1196

Official Ans. by NTA (A)

Sol. $\mathrm{z}_{0}=\left(\frac{0+3+0}{3}, \frac{0+6+0}{3}\right)=(1,2)$
$v_{0}=|1+2 i|^{2}+|1+2 i-3|^{2}+|1+2 i-6 i|^{2}=30$
Then $\left|2 z_{0}^{2}-\bar{z}_{0}^{3}+3\right|^{2}+v_{0}^{2}$
$=\left|2(1+2 i)^{2}-(1-2 i)^{3}+3\right|^{2}+900$
$=|2(1-4+4 i)-(1-4-4 i)(1-2 i)+3|^{2}+900$
$=|8+6 i|^{2}+900=100+900=1000$
4. Let $A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$. Let $\alpha, \beta \in \mathbb{R}$ be such that $\alpha A^{2}+\beta A=2 I$. Then $\alpha+\beta$ is equal to -
(A) -10
(B) -6
(C) 6
(D) 10

Official Ans. by NTA (D)

Sol. Characteristic equation of matric A
$|A-\lambda I|=0$
$\left|\begin{array}{cc}1-\lambda & 2 \\ -2 & -5-\lambda\end{array}\right|=0$
$\Rightarrow \lambda^{2}+4 \lambda=1$
$\Rightarrow A^{2}+4 A=I$
$\Rightarrow 2 \mathrm{~A}^{2}+8 \mathrm{~A}=2 \mathrm{I}$
Given that $\quad \alpha A^{2}+\beta A=2 I$
Comparing equation (1) \& (2) we get

$$
\begin{aligned}
& \alpha=2, \quad \beta=8 \\
& \therefore \alpha+\beta=10
\end{aligned}
$$

Ans. (D) (10)
5. The remainder when $(2021)^{2022}+(2022)^{2021}$ is divided by 7 is
(A) 0
(B) 1
(C) 2
(D) 6

Official Ans. by NTA (A)

Sol. $\quad(2021)^{2022}+(2022)^{2021}$

$$
\begin{aligned}
& =(2023-2)^{2022}+(2023-1)^{2021} \\
& =7 \mathrm{n}_{1}+2^{2022}+7 \mathrm{n}_{2}-1 \\
& =7\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)+8^{674}-1 \\
& =7\left(n_{1}+n_{2}\right)+(7-1)^{674}-1
\end{aligned}
$$

$$
=7\left(n_{1}+n_{2}\right)+7 n_{3}+1-1
$$

$$
=7\left(n_{1}+n_{2}+n_{3}\right)
$$

\therefore Given number is divisible by 7 hence remainder is zero
6. Suppose $a_{1}, a_{2}, \ldots, a_{\mathrm{n}}, \ldots$ be an arithmetic progression of natural numbers. If the ratio of the sum of the first five terms of the sum of first nine terms of the progression is $5: 17$ and $110<a_{15}<$ 120 , then the sum of the first ten terms of the progression is equal to -
(A) 290
(B) 380
(C) 460
(D) 510

Official Ans. by NTA (B)

Sol. $\quad \frac{S_{5}}{S_{9}}=\frac{5}{17} \Rightarrow \frac{\frac{5}{2}(2 a+4 d)}{\frac{9}{2}(2 a+8 d)}=\frac{5}{17}$
$\Rightarrow \mathrm{d}=4 \mathrm{a}$
$a_{15}=a+14 d=57 a$
Now, $110<\mathrm{a}_{15}<120$
$\Rightarrow 110<57 \mathrm{a}<120$
$\Rightarrow \mathrm{a}=2 \therefore \mathrm{~d}=8$
$\mathrm{S}_{10}=\frac{10}{2}(2 \times 2+9 \times 8)=380$
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined as
$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$, where $[t]$ is the greatest integer less than or equal to t. If $\lim _{x \rightarrow-1} f(x)$ exists, then the value of $\int_{0}^{4} f(x) d x$ is equal to :
(A) -1
(B) -2
(C) 1
(D) 2

Official Ans. by NTA (B)

Sol. $\quad \lim _{x \rightarrow-1^{+}} a \sin \left(\pi \frac{[x]}{2}\right)+[2-x]=-a+2$
$\lim _{x \rightarrow-1^{-}} a \sin \left(\pi \frac{[x]}{2}\right)+[2-x]=0+3=3$
$\lim _{x \rightarrow-1} f(x)$ exist when $a=-1$

Now,
$\int_{0}^{4} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{4} f(x) d x$
$=\int_{0}^{1}(0+1) \mathrm{dx}+\int_{1}^{2}(-1+0) \mathrm{dx}+\int_{2}^{3}(0-1) \mathrm{dx}+\int_{3}^{4}(1-2) \mathrm{d} x$
$=1-1-1-1=-2$
8. $\quad I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x$. Then
(A) $\frac{\pi}{2}<I<\frac{3 \pi}{4}$
(B) $\frac{\pi}{5}<I<\frac{5 \pi}{12}$
(C) $\frac{5 \pi}{12}<I<\frac{\sqrt{2}}{3} \pi$
(D) $\frac{3 \pi}{4}<I<\pi$

Official Ans. by NTA (C)

Sol. Consider
$f(x)=8 \sin x-\sin 2 x$
$f^{\prime}(x)=8 \sin x-2 \cos 2 x$
$f^{\prime \prime}(x)=-8 \sin x+4 \sin 2 x$
$=-8 \sin x(1-\cos x)$
$\therefore \mathrm{f}^{\prime \prime}(\mathrm{x})<0 \mathrm{x} \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})$ is \downarrow function
$\mathrm{f}^{\prime}\left(\frac{\pi}{3}\right)<\mathrm{f}^{\prime}(\mathrm{x})<\mathrm{f}^{\prime}\left(\frac{\pi}{4}\right)$
$5<\mathrm{f}^{\prime}(\mathrm{x})<\frac{8}{\sqrt{2}}$
$5<\mathrm{f}^{\prime}(\mathrm{x})<4 \sqrt{2}$
$5 \mathrm{x}<\mathrm{f}(\mathrm{x})<4 \sqrt{2} \mathrm{x}$
$5<\frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}}<4 \sqrt{2}$
$\int_{\pi / 4}^{\pi / 3} 5<\int \frac{\mathrm{f}(\mathrm{x})}{\mathrm{X}}<\int_{\pi / 4}^{\pi / 3} 4 \sqrt{2}$
$\int_{\pi / 4}^{\pi / 3} 5<\int \frac{8 \sin x-\sin 2 x}{x}<\int_{\pi / 4}^{\pi / 3} 4 \sqrt{2}$
$\frac{5 \pi}{12}<\mathrm{I}<\frac{\sqrt{2} \pi}{3}$
9. The area of the smaller region enclosed by the curves $y^{2}=8 x+4$ and $x^{2}+y^{2}+4 \sqrt{3} x-4=0$ is equal to
(A) $\frac{1}{3}(2-12 \sqrt{3}+8 \pi)$
(B) $\frac{1}{3}(2-12 \sqrt{3}+6 \pi)$
(C) $\frac{1}{3}(4-12 \sqrt{3}+8 \pi)$
(D) $\frac{1}{3}(4-12 \sqrt{3}+6 \pi)$

Official Ans. by NTA (C)
Sol.

$y^{2}=8 x+4$
Point of intersections are $(0,2) \&(0,-2)$
Both are symmetric about x -axis
Area $=2 \int_{0}^{2}\left(\sqrt{16-y^{2}}-2 \sqrt{3}\right)-\left(\frac{y^{2}-4}{8}\right) \mathrm{dy}$
On solving Area $=\frac{1}{3}[8 \pi+4-12 \sqrt{3}]$
10. Let $\mathrm{y}=\mathrm{y}_{1}(\mathrm{x})$ and $\mathrm{y}=\mathrm{y}_{2}(\mathrm{x})$ be two distinct solutions of the differential equation $\frac{d y}{d x}=x+y$, with $y_{1}(0)=0$ and $y_{2}(0)=1$ respectively. Then, the number of points of intersection of $y=y_{1}(x)$ and $\mathrm{y}=\mathrm{y}_{2}(\mathrm{x})$ is
(A) 0
(B) 1
(C) 2
(D) 3

Official Ans. by NTA (A)

Sol. $\frac{d y}{d x}=x+y \Rightarrow \frac{d y}{d x}-y=x$
1f $=\mathrm{e}^{-\mathrm{x}}$
\therefore solution is $y e^{-x}=\int x e^{-x} d x$
$\Rightarrow y e^{-x}=-x e^{-x}-e^{-x}+c$
$\Rightarrow y=-x-1+c e^{x}$
$y_{1}(0)=0 \Rightarrow c=1$
$\therefore y_{1}=-x-1+e^{x}$
$\mathrm{y}_{2}(0)=1 \Rightarrow \mathrm{c}=2$
$\therefore y_{2}=-x-1+2 e^{x}$
Now $y_{2}-y_{1}=e^{x}>0 \therefore y_{2} \neq y_{1}$
\therefore Number of points of intersection of $y_{1} \& y_{2}$ is zero.
11. Let $\mathrm{P}(a, b)$ be a point on the parabola $\mathrm{y}^{2}=8 \mathrm{x}$ such that the tangent at P passes through the centre of the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{x}-14 \mathrm{y}+65=0$. Let A be the product of all possible values of a and B be the product of all possible values of b. Then the value of $A+B$ is equal to :
(A) 0
(B) 25
(C) 40
(D) 65

Official Ans. by NTA (D)

Sol. $P(a, b)$ is point on $y^{2}=8 x$, such that tangent at P pass through centre of $x^{2}+y^{2}-10 x-14 y+65=0$ i.e. $(5,7)$

Tangent at $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ is $\mathrm{ty}=\mathrm{x}+\mathrm{at}^{2}$

A $=2 \&$ it pass through $(5,7)$
$7 \mathrm{t}=5+2 \mathrm{t}^{2}$
$\Rightarrow t=1, t=\frac{5}{2}$
$\therefore P\left(a t^{2}, 2 a t\right) \Rightarrow(2,4)$ when $\mathrm{t}=1$
$\&\left(\frac{25}{2}, 10\right)$ when $t=\frac{5}{2}$
$\therefore A=2 \times \frac{25}{2}=25$
B $=4 \times 10=40$
$\therefore A+B=65$
12. Let $\vec{a}=\alpha \hat{i}+\hat{j}+\beta \hat{k}$ and $\vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$ be two vectors, such that $\vec{a} \times \vec{b}=-\hat{i}+9 \hat{i}+12 k$. Then the projection of $\vec{b}-2 \vec{a}$ on $\vec{b}+\vec{a}$ is equal to
(A) 2
(B) $\frac{39}{5}$
(C) 9
(D) $\frac{46}{5}$

Official Ans. by NTA (D)

Sol. Let $\vec{a}=\alpha \hat{i}+\hat{j}+\beta \hat{k}, \vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$
$\vec{a} \times \vec{b}=-\hat{i}+9 \hat{j}+12 \hat{k}$
$\Rightarrow\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \alpha & 1 & \beta \\ 3 & -5 & 4\end{array}\right|$
$\Rightarrow(4+5 \beta) \hat{i}+(3 \beta-4 \alpha) \hat{j}+(-5 \alpha-3) \hat{k}$
$=-\hat{i}+9 \hat{j}+12 \hat{k}$
$\therefore 4+5 \beta=-1,3 \beta-4 \alpha=9,-5 \alpha-3=12$
$\beta=-1, \quad \alpha=-3$
$\therefore \vec{a}=-3 \hat{i}+\hat{j}-\hat{k}, \vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$
$\therefore \vec{a}+\vec{b}=-4 \hat{j}+3 \hat{k}$
$|\vec{a}|^{2}=11,|\vec{b}|^{2}=50$
$\vec{a} \cdot \vec{b}=-9+(-5)-4=-18$
\therefore Projectile of $(\vec{b}-2 \vec{a})$ on $\vec{a}+\vec{b}$ is
$\frac{(\vec{b}-2 \vec{a}) \cdot(\vec{a}+\vec{b})}{|\vec{a}+\vec{b}|}$
$=\frac{|\vec{b}|^{2}-2|\vec{a}|^{2}-(\vec{a} \cdot \vec{b})}{|\vec{a}+\vec{b}|}=\frac{50-22-(-18)}{5}=\frac{46}{5}$
Ans. $\left(\frac{46}{5}\right)$
13. Let $\vec{a}=2 \hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=\alpha \hat{i}+\beta \hat{j}+2 \hat{k}$. If $((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k}=\frac{23}{2}$, then $|\vec{b} \times 2 \hat{j}|$ is equal to
(A) 4
(B) 5
(C) $\sqrt{21}$
(D) $\sqrt{17}$

Official Ans. by NTA (B)

Sol. $\vec{a}=2 \hat{i}-\hat{j}+5 \hat{k}, \vec{b}=\alpha \hat{i}+\beta \hat{j}+2 \hat{k}$
$((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k}=\frac{23}{2}$, then $|\vec{b} \times 2 \hat{j}|$ is
$((\vec{a} \cdot \hat{i}) \vec{b}-(\vec{b} \cdot \hat{i}) \vec{a}) \cdot \hat{k}=\frac{23}{2}$
$(\vec{a} \cdot \hat{i})(\vec{b} \cdot \hat{i})-(\vec{b} \cdot \hat{i})(\vec{a} \cdot \hat{k})=\frac{23}{2}$
$2 \times 2-\alpha \times 5=\frac{23}{2} \Rightarrow 5 \alpha=4-\frac{23}{2} \Rightarrow \alpha=\frac{-3}{2}$
$\vec{b} \times 2 \hat{j}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \alpha & \beta & 2 \\ 0 & 2 & 0\end{array}\right|=-4 \hat{i}+2 \alpha \hat{k}$
$\therefore|\vec{b} \times 2 \hat{j}|=\sqrt{16+4 \alpha^{2}}=\sqrt{16+4 \times \frac{9}{4}}=5$
14. Let S be the sample space of all five digit numbers. If p is the probability that a randomly selected number from S , is a multiple of 7 but not divisible by 5 , then $9 p$ is equal to
(A) 1.0146
(B) 1.2085
(C) 1.0285
(D) 1.1521

Official Ans. by NTA (C)

Sol. $\quad n(S)=$ all 5 digit nos $=9 \times 10^{4}$
A : no is multiple of 7 but not divisible by 5

Smallest 5 digit divisible by 7 is 10003
Largest 5 digit divisible by 7 is 99995
$\therefore 99995=10003+(n-1) 7 \quad n=12857$
Numbers divisible by 35
$99995=10010+(\mathrm{P}-1) 35 \Rightarrow \mathrm{P}=2572$
\therefore Numbers divisible by 7 but not by 35 are

$$
12857-2572=10285
$$

$\therefore \mathrm{P}=\frac{10285}{90000} \quad \therefore 9 \mathrm{P}=1.0285$
Ans. (C) [1.0285]
15. Let a vertical tower AB of height $2 h$ stands on a horizontal ground. Let from a point P on the ground a man can see upto height h of the tower with an angle of elevation 2α. When from P, he moves a distance d in the direction of $\overrightarrow{A P}$, he can see the top B of the tower with an angle of elevation α. If $d=\sqrt{7} h$, then $\tan \alpha$ is equal to
(A) $\sqrt{5}-2$
(B) $\sqrt{3}-1$
(C) $\sqrt{7}-2$
(D) $\sqrt{7}-\sqrt{3}$

Official Ans. by NTA (C)

Sol.

$\tan 2 \alpha=\frac{h}{x}$
and $\tan \alpha=\frac{2 h}{x+\sqrt{7} h}$
$\tan \alpha=\frac{2 h}{h \cot 2 \alpha+\sqrt{7} h}$
$\tan \alpha=\frac{2}{\frac{\left(1-\tan ^{2} \alpha\right)}{2 \tan \alpha}+\sqrt{7}}$
Put $\tan \alpha=t \&$ simplify
$\Rightarrow \tan \alpha=\sqrt{7}-2$
16. $\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when r is
(A) p
(B) $\sim p$
(C) q
(D) $\sim q$

Official Ans. by NTA (C)

Sol. Given $\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right) \equiv(\sim p)$
Taking $\mathrm{r}=\mathrm{q}$

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\mathrm{p}^{\wedge} \mathrm{q}$	$\mathrm{P}^{\wedge} \sim \mathrm{q}$	$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	F	T
F	F	T	T	F	F	T
So, clear $\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right) \equiv(\sim p)$						

17. If the plane P passes through the intersection of two mutually perpendicular planes $2 \mathrm{x}+\mathrm{ky}-5 \mathrm{z}=$ 1 and $3 \mathrm{kx}-\mathrm{ky}+\mathrm{z}=5, \mathrm{k}<3$ and intercepts a unit length on positive x-axis, then the intercept made by the plane P on the y -axis is
(A) $\frac{1}{11}$
(B) $\frac{5}{11}$
(C) 6
(D) 7

Official Ans. by NTA (D)

Sol. Two given planes mutually perpendicular
$2(3 \mathrm{k})+\mathrm{k}(-\mathrm{k})+(-5) 1=0$
$\mathrm{k}=1,5$
but $\mathrm{k}<3$

$$
\text { So } \mathrm{k}=1
$$

Plane passing through these planes is
$2 x+y-5 z-1+\lambda(3 x-y+z-5)=0$
$\frac{x}{\frac{5 \lambda+1}{2+3 \lambda}}+\frac{y}{\frac{5 \lambda+1}{1-\lambda}}+\frac{z}{\frac{5 \lambda+1}{\lambda-5}}=1$
Given $\frac{5 \lambda+1}{2+3 \lambda}=1 \Rightarrow \lambda=\frac{1}{2}$
So intercept on $\mathrm{y}-$ axis $=\frac{5 \lambda+1}{1-\lambda}=7$
18. Let $\mathrm{A}(1,1), \mathrm{B}(-4,3) \mathrm{C}(-2,-5)$ be vertices of a triangle ABC, P be a point on side BC , and Δ_{1} and Δ_{2} be the areas of triangle APB and ABC . Respectively.

If $\Delta_{1}: \Delta_{2}=4: 7$, then the area enclosed by the lines AP, AC and the x -axis is
(A) $\frac{1}{4}$
(B) $\frac{3}{4}$
(C) $\frac{1}{2}$
(D) 1

Official Ans. by NTA (C)

Sol.

Given $\Delta_{1}=\frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ 1 & 1 & 1 \\ -4 & 3 & 1\end{array}\right|$
$\& \Delta_{2}=\frac{1}{2}\left|\begin{array}{ccc}1 & 1 & 1 \\ -4 & 3 & 1 \\ -2 & -5 & 1\end{array}\right|$
Given $\frac{\Delta_{1}}{\Delta_{2}}=\frac{4}{7} \Rightarrow \frac{-2 x-5 y+7}{36}=\frac{4}{7}$
$\Rightarrow 14 x+35 y=-95$
Equation of BC is $4 \mathrm{x}+\mathrm{y}=-13$
Solve equation (1) \& (2)
Point $P\left(\frac{-20}{7}, \frac{-11}{7}\right)$
Here point $Q\left(\frac{-1}{2}, 0\right) \& R\left(\frac{1}{2}, 0\right)$
So Area of triangle $\mathrm{AQR}=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
19. If the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{gx}+6 \mathrm{y}-19 \mathrm{c}=0, \mathrm{~g}, c \in \mathbb{R}$ passes through the point $(6,1)$ and its centre lies on the line $x-2 c y=8$, then the length of intercept made by the circle on x -axis is
(A) $\sqrt{11}$
(B) 4
(C) 3
(D) $2 \sqrt{23}$

Official Ans. by NTA (D)

Sol. Given circle $x^{2}+y^{2}-2 g x+6 y-19 c=0$
Passes through $(6,1)$
$12 \mathrm{~g}+19 \mathrm{c}=43$
Centre ($\mathrm{g},-3$) lies on given line
So, $g+6 c=8$
Solve equation (1) \& (2)
$\mathrm{c}=1 \& \mathrm{~g}=2$
equation of circle $x^{2}+y^{2}-4 x+6 y-19=0$
Length of intercept on x -axis
$=2 \sqrt{g^{2}-c}=2 \sqrt{23}$
20. Let a function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as :

$$
f(x)= \begin{cases}\int_{0}^{x}(5-|t-3|) d t, & x>4 \\ x^{2}+b x, & x \leq 4\end{cases}
$$

where $b \in \mathbb{R}$. If f is continuous at $\mathrm{x}=4$, then which of the following statements is NOT true?
(A) f is not differentiable at $\mathrm{x}=4$
(B) $f^{\prime}(3)+f^{\prime}(5)=\frac{35}{4}$
(C) f is increasing in $\left(-\infty, \frac{1}{8}\right) \cup(8, \infty)$
(D) f has a local minima at $x=\frac{1}{8}$

Official Ans. by NTA (C)

Sol. Given $f(x) \begin{cases}\int_{0}^{x}(5-|t-3|) d t, & x>4 \\ x^{2}+b x, & x \leq 4\end{cases}$
$\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=4$
So $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)=f(4)$
So $16+4 \mathrm{~b}=\int_{0}^{3}(2-t) d t+\int_{3}^{4}(8-t) d t$
$\Rightarrow 16+4 b=15$
So $b=\frac{-1}{4}$
At $x=4$
LHD $=2 \mathrm{x}+\mathrm{b}=\frac{31}{4}$
RHD $=5-|x-3|=4$
LHD \neq RHD
Option (A) is true
and $\mathrm{f}^{\prime}(3)+\mathrm{f}^{\prime}(5)=\frac{23}{4}+3=\frac{35}{4}$
Option (B) is true
$\because f(x)=x^{2}-\frac{x}{4}$ at $x \leq 4$
$f^{\prime}(x)=2 x-\frac{1}{4}$
This function is not increasing.
In the interval in $x \in\left(-\infty, \frac{1}{8}\right)$
Option (C) is NOT TRUE.
This function $\mathrm{f}(\mathrm{x})$ is also local minima at $x=\frac{1}{8}$

SECTION-B

1. For $k \in \mathbb{R}$, let the solutions of the equation
$\cos \left(\sin ^{-1}\left(x \cot \left(\tan ^{-1}\left(\cos \left(\sin ^{-1} x\right)\right)\right)\right)\right)=k, 0<|x|<\frac{1}{\sqrt{2}}$
be α and β, where the inverse trigonometric functions take only principal values. If the solutions of the equation $x^{2}-b x-5=0$ are $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$ and $\frac{\alpha}{\beta}$, then $\frac{b}{k^{2}}$ is equal to \qquad .

Official Ans. by NTA (12)

Sol. $\cos \left(\sin ^{-1} x\right)=\cos \left(\cos ^{-1} \sqrt{1-x^{2}}\right)=\sqrt{1-x^{2}}$

$$
\begin{aligned}
& \cot \left(\tan ^{-1} \sqrt{1-x^{2}}\right)=\cot \cot ^{-1}\left(\sqrt{\frac{1}{\sqrt{1-x^{2}}}}\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \Rightarrow \cos \left(\sin ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)\right)=\frac{\sqrt{1-2 x^{2}}}{\sqrt{1-x^{2}}} \\
& \Rightarrow \frac{\sqrt{1-2 x^{2}}}{\sqrt{1-x^{2}}}=k \\
& \Rightarrow 1-2 x^{2}=k^{2}\left(1-x^{2}\right) \\
& \Rightarrow\left(k^{2}-2\right) x^{2}=k^{2}-1 \\
& x^{2}=\frac{k^{2}-1}{k^{2}-2} \\
& \alpha=\sqrt{\frac{k^{2}-1}{k^{2}-2}} \Rightarrow \alpha^{2}=\frac{k^{2}-1}{k^{2}-2}
\end{aligned}
$$

$\beta=\sqrt{\frac{k^{2}-1}{k^{2}-2}} \Rightarrow \beta^{2}=\frac{k^{2}-1}{k^{2}-2}$
$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=2\left(\frac{k^{2}-2}{k^{2}-1}\right) \& \frac{\alpha}{\beta}=-1$
Sum of roots $=\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{\alpha}{\beta}=b$
$\Rightarrow \frac{2\left(k^{2}-2\right)}{k^{2}-1}-1=b$
Product of roots $=\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}\right) \frac{\alpha}{\beta}=-5$
$\Rightarrow \frac{2\left(k^{2}-2\right)}{k^{2}-1}(-1)=-5$
$\Rightarrow 2 k^{2}-4=5 k^{2}-5$
$\Rightarrow 3 k^{2}=1 \Rightarrow k^{2}=\frac{1}{3} \ldots$. Put in (1)
$\Rightarrow b=\frac{2\left(k^{2}-2\right)}{k^{2}-1}-1=5-1=4$
$\frac{b}{k^{2}}=\frac{4}{\frac{1}{3}}=12$
2. The mean and variance of 10 observations were calculated as 15 and 15 respectively by a student who took by mistake 25 instead of 15 for one observation. Then, the correct standard deviation is \qquad .

Official Ans. by NTA (2)

Sol. $\mathrm{n}=10, \bar{x}=\frac{\sum x_{i}}{10}=15$

$$
\begin{aligned}
& 6^{2}=\frac{\sum x_{i}^{2}}{10}-(\bar{x})^{2}=15 \\
& \Rightarrow \sum_{i=1}^{10} x_{i}=150
\end{aligned}
$$

$\Rightarrow \sum_{i=1}^{9} x_{i}+25=150$
$\Rightarrow \sum_{i=1}^{9} x_{i}=125$
$\Rightarrow \sum_{i=1}^{9} x_{i}+15=140$
Actual mean $=\frac{140}{10}=14=\bar{x}_{\text {new }}$
$\sum_{i=1}^{9} \frac{x_{i}^{2}+25^{2}-15^{2}}{10}=15$
$\Rightarrow \sum_{i=1}^{9} x_{i}^{2}+625=2400$
$\sum_{i=1}^{9} x_{i}^{2}=1775$
$\sum_{i=1}^{9} x_{i}^{2}+15^{2}=2000=\left(\sum x_{i}^{2}\right)_{\text {actual }}$
$6_{\text {actual }}^{2}=\frac{\left(\sum x_{i}^{2}\right)_{\text {actual }}-\left(\bar{x}_{\text {new }}\right)^{2}}{10}$
$=\frac{2000}{10}-14^{2}$
$=200-196=4$
$(\mathrm{S.D})_{\text {actual }}=6=2$
3. Let the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}$ intersect the plane containing the lines $\frac{x-4}{1}=\frac{y+1}{-2}=\frac{z}{1}$ and $4 a x-y+5 z-7 a=0=2 \mathrm{x}-5 \mathrm{y}-\mathrm{z}-3, a \in \mathbb{R}$ at the point $P(\alpha, \beta, \gamma)$. Then the value of $\alpha+\beta+\gamma$ equals \qquad -.

Official Ans. by NTA (12)

Sol. Equation of plane

$$
4 a x-y+5 z-7 a+\lambda(2 x-5 y-z-3)=0
$$

this satisfy $(4,-1,0)$
$16 a+1-7 a+\lambda(8+5-3)=0$
$9 a+1+10 \lambda=0$

Normal vector of the plane A is $(4 a+2 \lambda,-1-5 \lambda, 5-\lambda)$ vector along the line which contained the plane A is
$\mathrm{i}-2 \mathrm{j}+\mathrm{k}$
$\therefore 4 a+2 \lambda+2+10 \lambda+5-\lambda=0$
$11 \lambda+4 a+7=0$
Solve (1) and (2) to get $\mathrm{a}=1, \lambda=-1$
Now equation of plane

$$
x+2 y+3 z-2=0
$$

Let the point in the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z-3}{-4}=t$
is $(7 t+3,-t+2,-4 t+3)$ satisfy the equation of plane A
$7 \mathrm{t}+3-2 \mathrm{t}+4+9-12 \mathrm{t}-2=0$
$\mathrm{t}=2$
So $\alpha+\beta+\gamma=2 t+8=12$
4. An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$. Let the major and minor axes of the ellipse E coincide with the transverse and conjugate axes of the hyperbola H. Let the product of the eccentricities of E and H be $\frac{1}{2}$. If l is the length of the latus rectum of the ellipse E , then the value of $113 l$ is equal to \qquad -

Official Ans. by NTA (1552)

Sol. Hyp : $\frac{y^{2}}{64}-\frac{x^{2}}{49}=1$
An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$.

So $b^{2}=64$
$e_{H}=\sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{1+\frac{49}{64}}$
Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$e_{E}=\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{a^{2}}{64}}$
$b=8, \sqrt{\frac{1-a^{2}}{64}} \times \frac{\sqrt{113}}{8}=\frac{1}{2} \Rightarrow \sqrt{64-a^{2}} \times \sqrt{113}=32$
$\left(64-a^{2}\right)=\frac{32^{2}}{113}$
$\Rightarrow a^{2}=64-\frac{32^{2}}{113}$
$l=\frac{2 a^{2}}{b}=\frac{2}{8}\left(64-\frac{32^{2}}{113}\right)=\frac{1552}{113}$
$113 l=1552$
5. Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution curve of the differential equation
$\sin \left(2 x^{2}\right) \log _{e}\left(\tan x^{2}\right) d y+\left(4 x y-4 \sqrt{2} x \sin \left(x^{2}-\frac{\pi}{4}\right)\right) d x=0$, $0<x<\sqrt{\frac{\pi}{2}}$, which passes through the point $\left(\sqrt{\frac{\pi}{6}}, 1\right)$. Then $\left|y\left(\sqrt{\frac{\pi}{3}}\right)\right|$ is equal to \qquad .

Official Ans. by NTA (1)

Sol.
$\sin \left(2 x^{2}\right) \ln \left(\tan x^{2}\right) d y+\left(4 x y-4 \sqrt{2} x \sin \left(x^{2}-\frac{\pi}{4}\right)\right) d x=0$
$\ln \left(\tan x^{2}\right) d y+\frac{4 x y d x}{\sin \left(2 x^{2}\right)}-\frac{4 \sqrt{2} x \sin \left(x^{2}-\frac{\pi}{4}\right)}{\sin \left(2 x^{2}\right)} d x=0$
$d\left(y \cdot \ln \left(\tan x^{2}\right)\right)-4 \sqrt{2} x \frac{\left(\sin x^{2}-\cos x^{2}\right)}{\sqrt{2}-2 \sin x^{2} \cos x^{2}} d x=0$
$d\left(y \ln \left(\tan x^{2}\right)\right)-\frac{4 x\left(\sin x^{2}-\cos x^{2}\right)}{\left(\sin x^{2}+\cos ^{2}\right)-1} d x=0$
$\Rightarrow \int d\left(y \ln \left(\tan x^{2}\right)\right)+2 \int \frac{d t}{t^{2}-1}=\int 0$
$\Rightarrow y \ln \left(\tan x^{2}\right)+2 \cdot \frac{1}{2} \ln \left|\frac{t-1}{t+1}\right|=c$
$y \ln \left(\tan x^{2}\right)+\ln \left(\frac{\sin x^{2}+\cos x^{2}-1}{\sin x^{2}+\cos x^{2}+1}\right)=c$
Put $\mathrm{y}=1$ and $x=\sqrt{\frac{\pi}{6}}$
$1 \ln \left(\frac{1}{\sqrt{3}}\right)+\ln \frac{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}-1\right)}{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}+1\right)}=c$
Now $x=\sqrt{\frac{\pi}{3}} \Rightarrow y(\ln \sqrt{3})+\ln \left(\frac{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}-1\right)}{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}+1\right)}=\ln \left(\frac{1}{\sqrt{3}}\right)+\ln \left(\frac{\sqrt{3}-1}{\sqrt{3}+3}\right)\right.$
$y(\ln \sqrt{3})=\ln \left(\frac{1}{\sqrt{3}}\right)$
$\Rightarrow \mathrm{y}=-1$
$|y|=1$
6. Let M and N be the number of points on the curve $y^{5}-9 x y+2 x=0$, where the tangents to the curve are parallel to x-axis and y-axis, respectively. Then the value of $\mathrm{M}+\mathrm{N}$ equals \qquad .

Official Ans. by NTA (2)

Sol. $\mathrm{y}^{5}-9 \mathrm{xy}+2 \mathrm{x}=0$
$5 y^{4} \frac{d y}{x}-9 x \frac{d y}{d x}-9 y+2=0$
$\frac{d y}{d x}\left(5 y^{4}-9 x\right)=9 y-2$
$\frac{d y}{d x}=\frac{9 y-2}{5 y^{4}-9 x}=0$ (for horizontal tangent)
$y=\frac{2}{9} \Rightarrow$ Which does not satisfy the original equation $\Rightarrow \mathrm{M}=0$.

Now $5 y^{4}-9 x=0$ (for vertical tangent)
$5 y^{4}(9 y-2)-9 y^{5}=0$
$y^{4}[45 y-10-9 y]=0$
$y=0($ Or $) 36 y=10$
$y=\frac{5}{18}$
$y=0 \Rightarrow x=0 \& y=\frac{5}{18} \Rightarrow x=$

$$
\begin{equation*}
\left(x, \frac{5}{18}\right) \tag{0,0}
\end{equation*}
$$

$\mathrm{N}=2$
$\mathrm{M}+\mathrm{N}=0+2=2$
7. Let $f(x)=2 x^{2}-x-1$ and $S=\{n \in \mathbb{Z}:|f(n)| \leq 800\}$. Then, the value of $\sum_{n \in S} f(n)$ is equal to \qquad -

Official Ans. by NTA (10620)
$\frac{1-\sqrt{6409}}{4} \leq n \leq \frac{1+\sqrt{6409}}{4}$
$n=\{-19,-18-17, \ldots \ldots . .0,1,2, \ldots \ldots, 20\}$
$\sum_{n \in S} f(x)=\sum\left(2 x^{2}-x-1\right)$
$=2\left[19^{2}+18^{2}+\ldots . .+1^{2}+1^{2}+2^{2}+\ldots .+19^{2}+20^{2}\right]$
$=4\left[1^{2}+2^{2}+\ldots . .+19^{2}\right]+2\left[20^{2}\right]-20-40$
$=\frac{4 \times 19 \times 20 \times(2 \times 19+1)}{6}+2 \times 400-60$
$=\frac{4 \times 19 \times 20 \times 39}{6}+800-60-9880+800-60$
$=10620$
8. Let S be the set containing all 3×3 matrices with entries from $\{-1,0,1\}$. The total number of matrices $\mathrm{A} \in S$ such that the sum of all the diagonal elements of $A^{T} A$ is 6 is \qquad .

Official Ans. by NTA (5376)

Sol. $\operatorname{Tr}\left(A A^{T}\right)=6$
$\mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$

Now given $a^{2}+d^{2}+g^{2}+b^{2}+e^{2}+h^{2}+c^{2}+f^{2}+i^{2}=6$
$={ }^{9} C_{3} \times 2^{6}$
$=5376$
9. If the length of the latus rectum of the ellipse $x^{2}+$ $4 \mathrm{y}^{2}+2 \mathrm{x}+8 \mathrm{y}-\lambda=0$ is 4 , and l is the length of its major axis, then $\lambda+l$ is equal to \qquad —.

Official Ans. by NTA (75)

Sol. $\lambda+\ell=75$
$x^{2}+4 y^{2}+2 x+8 y-\lambda=0$
$\frac{(x+1)^{2}}{\lambda+5}+\frac{(y+1)^{2}}{\frac{\lambda+5}{4}}=1$
$\because \frac{2 b^{2}}{a}=4$
$\frac{2(\lambda+5)}{4}=4(\sqrt{\lambda+5})$
$\Rightarrow \lambda=59$
$\lambda \neq-5$
$l=2 a=2 \sqrt{\lambda+5}=2 \sqrt{65}=16$
$\Rightarrow \lambda+\ell=59+16=75$
10. Let $S=\left\{z \in \mathbb{C}: z^{2}+\bar{z}=0\right\}$. Then $\sum_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to \qquad .

Official Ans. by NTA (0)

Sol. $S=\left\{z \in C: z^{2}+\bar{z}=0\right\}$
Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\mathrm{z}^{2}=\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{ixy}$
$\bar{z}=x-i y$
$z^{2}+\bar{z}=x^{2}-y^{2}+x+i(2 x y-y)=0$
$\Rightarrow x^{2}+x-y^{2}=0 \& 2 x y-y=0$
$y=0$ or $x=\frac{1}{2}$
If $y=0 ; x=0,-1$
If $x=\frac{1}{2} ; y=\frac{\sqrt{3}}{2}, \frac{-\sqrt{3}}{2}$
$\sum_{z \in S}\left(\operatorname{Re}(z)+\operatorname{Im}(z)=\left(0-1+\frac{1}{2}+\frac{1}{2}\right)+0+0+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)$

