## Ph. D.PHYSICS

| 1.  | The wave function of a Gaussian wave packet is given by (x)=A exp[ikx $-\frac{x^2}{2\alpha^2}$ ]. The value of                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | factor A is                                                                                                                                                          |
|     | (a) $\frac{1}{\sqrt{\pi \alpha}}$ (b) $\frac{1}{\pi a}$ (c) $\frac{1}{\sqrt{\pi \sqrt{a}}}$ (d) $\frac{1}{\sqrt{a\sqrt{\pi}}}$                                       |
| 2.  | The de Broglie wave length for an electron of energy 54 eV is                                                                                                        |
|     | (a) 0.67 Å (b) 1.67 Å (c) 2.67 Å (d) 3.67 Å                                                                                                                          |
| 3.  | Which one is correct for a photon                                                                                                                                    |
|     | (a) finite rest mass and spin $\frac{1}{2}$ (b) finite rest mass and spin 1                                                                                          |
|     | (c) zero rest mass and spin $\frac{1}{2}$ (d) zero rest mass and spin 1                                                                                              |
| 4.  | Energy operator for a quantum system is                                                                                                                              |
|     | (a) $i\hbar \frac{\partial}{\partial x}$ (b) $i\hbar \frac{\partial}{\partial y}$ (c) $i\hbar \frac{\partial}{\partial z}$ (d) $-i\hbar \frac{\partial}{\partial z}$ |
| 5.  | The product of uncertainty in two conjugate variables has the dimension of                                                                                           |
|     | (a) force (b) energy (c) angular momentum (d) torque                                                                                                                 |
| 6.  | Which of the following wave functions is acceptable in quantum mechanics                                                                                             |
|     | (a) $\tan x$ (b) $\cot x$ (c) $\csc x$ (d) $\sin x$                                                                                                                  |
| 7.  | If the ground state energy of a one dimensional finite potential well is E <sub>0</sub> , what will be its                                                           |
|     | energy in the third energy state?                                                                                                                                    |
|     | (a) $E_0$ (b) $E_0$ (c) $E_0$ (d) $E_0$                                                                                                                              |
| 8.  | When a particle of total energy greater than the potential energy of a single step barrier is                                                                        |
|     | incident on it, which of the following will not happen                                                                                                               |
|     | (a) reflection (b) transmission                                                                                                                                      |
|     | (c) reflection and transmission (d) transmission but no reflection                                                                                                   |
| 9.  | If a generalized co-ordinate is cyclic, which quantity is conserved?                                                                                                 |
|     | (a) torque (b) energy (c) momentum (d) mass                                                                                                                          |
| 10. | The conservation of angular momentum in a central force field leads to conservation of                                                                               |
|     | (a) energy (b) areal velocity (c) linear momentum (d) time period                                                                                                    |
| 11. | The Lagrangian of a system is given by                                                                                                                               |
| 10  | (a) T+V (b) T-V (c) H+V (d) H-V                                                                                                                                      |
|     | If a generalized coordinate has the dimension of momentum, the generalized velocity will                                                                             |
|     | have the dimension of                                                                                                                                                |
| 12  | (a) torque (b) force (c) acceleration (d) velocity  For attractive inverse square law of force, which is not the share of the orbit                                  |
| 13. | For attractive inverse square law of force, which is not the shape of the orbit                                                                                      |
| 11  | (a) elliptic (b) parabolic (c) hyperbolic (d) straight line<br>For a system of two bodies with masses in the ratio 1:2, the reduced mass of the system is            |
| 17. |                                                                                                                                                                      |
|     | (a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) 1 (d) $\frac{4}{3}$                                                                                                          |
| 15. | For a homogeneous cube of density d, mass M and sides a, the moment of inertia                                                                                       |
|     | coefficients are                                                                                                                                                     |
|     | (a) $\frac{1}{3}$ b (b) $\frac{2}{3}$ b (c) b (d) $\frac{4}{3}$ b                                                                                                    |
|     | (Given $b=Ma^2$ )                                                                                                                                                    |
|     |                                                                                                                                                                      |