CIVIL ENGINEERING

Poisson's ratio of steel is taken as

1.

	(A) 0.17	(B) 0.25	(C) 0.3	(D) 0.5
2.	A point in a body consists of linearly elastic material, subjected to 100N/mm ² & 60N/mm ² along major and minor axis. The maximum stress is equal to			
	(A) 100N/mm ²		(B) 80N/mm ²	
	(C) 60N/mm ²		(D) 20N/mm ²	
3.	A thin cylinders 200mm diameter, closed at ends subjected to internal pressure of $10N/mm^2$. What is the maximum shear stress that occurs in wall of the cylinder if thickness of wall is $5mm$.			
	(A) 200N/mm ²		(B)150 N/mm ²	
	(C) 50N/mm ²		(D) 25N/mm ²	
4.	A simple supported beam of span / carries a gradually varying load, zero a supports and w/m at mid span the maximum BM at mid span is			
	(A) $\frac{\text{Wl}^2}{8}$ (C) $\frac{\text{Wl}^2}{12}$		(B) $\frac{\text{Wl}^2}{10}$	
	(C) $\frac{\text{Wl}^2}{12}$		(D) $\frac{\text{Wl}^2}{24}$	
5.	A cantilever beam of constant EI & Span <i>I</i> , subject to an u.d .l of w/m for span, the vertical deflection at free end is			
	(A) $5 \approx \frac{\text{wl}^4}{284\text{EI}}$ (C) $\frac{\text{wl}^4}{8\text{EI}}$		(B) $\frac{\text{wl}^4}{48\text{EI}}$	
	(C) $\frac{\text{wl}^4}{8\text{EI}}$		(D) wa⁴ wa⁴ 8EI 6EI	