CUET

APPLIED MATHEMATICS

26 May 2023 (Slot-2)

 One sample t-test, for testing population mean to a specified value (μ_0) is given by:

(a)
$$t = \frac{\overline{x} - \mu_0}{\frac{S}{n}}$$
 (b) $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}}$
(c) $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}}$ (d) $t = \frac{\overline{x} - \mu_0}{\frac{\sqrt{S}}{n}}$

2. Three partners shared a profit in a business in the ratio of 2:3:6. They had partnered for 12 months, 9 months and 6 months respectively. The ratio of their investment is:

(a) 1 : 2 : 6	(b) 1:2:4
(c) 2 : 6 : 1	(d) 2:1:4

- 3. A company has a fixed cost of ₹ 40,000. Arrange the break even points of the following four cases in the ascending order.
 - A. Cost of production of one item is ₹ 30 and it sells at ₹ 50
 - B. Cost of production of one item is ₹40 and it sells at ₹ 50
 - C. Cost of production of one item is ₹ 50 and it sells at ₹ 55
 - D. Cost of production of one item is ₹ 20 and it sells at ₹ 60

Choose the correct answer from the options given below:

(a) D < A < C < B	(b) D < A < B < C
(c) B < C < D < A	(d) D < C < B < A

4. In a 300 m race, A reaches the finish point in 20 sec and B reaches in 25 sec. By how much distance A beat B?

(a) 50 m	(b)	60 m
(c) 75 m	(d)	40 m

	(•) • • …	()	
5.	If $x < y$ and $z < 0$ then :		

- (a) x + z > y z (b) $\frac{x}{7} < \frac{y}{7}$ (c) $\frac{x}{z} > \frac{y}{z}$ (d) x + z > y + z
- 6. If y = log $(\sqrt{x+1} \sqrt{x-1})$, then $(x^2 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx}$ is equal to:
 - (a) $x + x^2$ (b) x² (d) 0 (c) x

7. The average cost function associated with producing and marketing x units of an item is given by

AC = $2x - 11 + \frac{50}{x}$ then the marginal cost of 10 items will be: (a) 14 (b) 140

- 8. If the corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5) then (maximum of z - minimum of z) for the objective function z = 4x + 6y is:
 - (a) 18 (b) 48
 - (c) 60 (d) 42
- 9. Match List I with List II.

Let X be a discrete random variable and $P(X = x_i)$ = p_i.

	List - I		List - II
Α.	E(X)	I.	$\sum x_i^2 p_i - (\sum x_i p_i)^2$
В.	E(X ²)	١١.	$\sum x_i p_i$
C.	σ_x^2 (Variance)	III.	$\sqrt{\Sigma x_i^2 p_1 - \left(\Sigma x_i p_1\right)^2}$
D.	σ_x (Standard	IV.	$\sum x_i^2 p_i$
	Deviation)		
Ch	oose the corract and	wor	from the options div

Choose the **correct** answer from the options given below:

- (a) A-III, B-IV, C-I, D-II (b) A-IV, B-II, C-I, D-III
- (c) A-II, B-IV, C-III, D-I (d) A-II, B-IV, C-I, D-III
- 10. The rate per annum compounded semi-annually so that the present value of a perpetuity of ₹4,000 payable at the beginning of each 6 month be ₹ 54,000 is:
 - (a) 8% (b) 7.4% (c) 16% (d) 14.8%
- 11. The price Index Number by simple aggregative method for the year 2018 by taking year 2017 as base year from the data given below, is:

Commodity	Price in 2017(₹)	Price in 2018 (₹)	
Rice	50	55	
Wheat	25	27	
Fish	80	74	
Potato	25	30	
Onion	20	30	
	∑P ₀ =200	∑P ₁ =216	
(a) 85.2	(b) 108		
(c) 216	(d) 84		

- **12.** If $x = \log_e t$, $y = \frac{1}{t}$ then $\frac{d^2y}{dx^2} + \frac{dy}{dx}$ is equal to: (a) 0 (b) $2e^{-x}$
 - (c) e^x (d) $-2e^{-x}$
- A company has issued a bond having the face value ₹ 4,000, carrying a coupon rate of 12% to be paid semi-annually. If the bond is maturing in 10 years

then the semi-annual dividend payment (in \mathbf{R}) is :

- (a) 360 (b) 280
- (c) 240 (d) 480

14. The function $f(x) = \frac{x}{2} + \frac{2}{x}$, $x \in \mathbb{R} - \{0\}$, :

- (a) has a local maximum at x = 2 and a local minimum at x = −2
- (b) is increasing in (-2, 0)
- (c) has a local minimum at x = 2 and a local maximum at x = -2
- (d) is decreasing in $(2, \infty)$
- **15.** Which of the following is not an example of a statistic?
 - (a) Average height of 20 students selected from a school
 - (b) Standard deviation of income of all workers in a factory
 - (c) Standard deviation of runs scored by Virat Kohli from his selected 10 one-day matches
 - (d) Average weight of first fifteen patients visiting a hospital
- 16. A furniture company buys back its sold items at

₹ 2,500 per item (having remaining useful life > 3 years at the time of purchase).

Mr. Mohan had purchased a table and a sofa set costing ₹ 4,000 and ₹ 21,000 respectively, having useful life of 10 years each. After 5 years he returns back these two pieces of furniture. The total estimated annual depreciation of the two furniture pieces is:

(a) ₹4,500	(b)	₹4,000
(c) ₹2,000	(d)	₹ 2,250
The optimal value of	the LPP	:

 $\max z = 4x + y$

 $x + y \le 50$

17.

3x + y ≤ 90

x, $y \ge 0$ occurs at the point:

- (a) (40, 10) (b) (30, 0)
- (c) (20, 30) (d) (0, 50)

- If A and B are any symmetric matrices each of order 3 × 3 then AB – BA is :
 - (a) a symmetric matrix
 - (b) a skew-symmetric matrix
 - (c) a zero matrix
 - (d) an identity matrix
- **19.** If the index number of the current year is computed on the basis of quantities of base year (P_{01}) and another index number is computed on the basis of quantities of current year (P_{10}) and index numbers satisfy time reversed test, then P_{01} . P_{10} =

(d) $\frac{1}{2}$

(a)
$$\frac{3}{2}$$
 (b) 1

(c) 2

20. Match List - I with List - II.

ivia	itch List - I with List - II .	
	List - I	List - II
	Matrix	Types of matrix
A.	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & 4 \end{bmatrix}$ II.	Skew symmetric
		matrix
B.	1 3 5 3 0 4 5 4 2	Upper triangular matrix
C.	$\begin{bmatrix} 0 & -2 & 1 \\ 2 & 0 & 5 \\ -1 & -5 & 0 \end{bmatrix}$ III.	Symmetric matrix
D.	$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ IV.	Diagonal matrix

Choose the **correct** answer from the options given below:

21. Let $X \sim Bin(3, p)$ be a binomial random variable. If P

(X = 3) =
$$\frac{1}{12}$$
 P (X = 1), then p is equal to:
(a) $\frac{1}{12}$ (b) $\frac{2}{12}$

(c) $\frac{2}{5}$ (d) $\frac{3}{5}$

22. If a boat can row upstream at 12 km/hr, and downstream at 20 km/hr, then the speed (in km/hr) of the stream and the speed (in km/hr) of the boat in still water are respectively:

(a) 4, 16	(b) ·	4, 14
(c) 6, 16	(d)	16, 4

23. If z_0 and z_1 are respectively the minimum and the maximum values of z = -3x + 4y over the feasible region represented by constraints

 $\begin{array}{ll} x + 2y \leq 8 \\ 3x + 2y \leq 12 \\ x \geq 0, \ y \geq 0 \\ \text{then } z_1 + z_0 \ \text{is equal to :} \\ (a) \ 22 & (b) \ -6 \\ (c) \ 4 & (d) \ 16 \end{array}$

24. In what ratio must a shopkeeper mix two types of oranges worth ₹ 55 per kg and ₹ 70 per kg respectively so as to get a mixture at ₹ 65 per kg.

(a) 1:2	(b) 2:3
---------	---------

- (c) 15 : 10 (d) 10 : 15
- **25.** If $x^y = e^{x-y}$, x > 0, then $\frac{dy}{dx}$ is equal to :

(a)
$$-\left\lfloor \frac{\log_e x}{(1+\log_e x)^2} \right\rfloor$$
 (b) $\frac{\log_e x}{(1+\log_e x)^2}$
(c) $-\frac{\log_e x}{1+\log_e x}$ (d) $\frac{\log_e x}{1+\log_e x}$

26. Match List - I with List - II. List - I

- A. The index number II. $p_{01} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1} \times 100$ based on weighted aggregates
- B. Paasche's index II. $p_{01} = \frac{\Sigma p_1 w}{\Sigma p_0 w} \times 100$ number
- C. Laspayre's index III. $p_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_1 q_1}{\sum q_0 q_1}} \times 100$ number
- D. Fisher's ideal index IV. $p_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$

Choose the **correct** answer from the options given below:

(a) A-I, B-II, C-III, D-IV	(b) A-I, B-II, C-IV, D-III
(c) A-II, B-I, C-IV, D-III	(d) A-IV, B-III, C-II, D-I

- **27.** The value of $13 \odot 18$ where $\bigcirc 15$ is multiplication modulo 15:
 - (a) 7 (b) 3
 - (c) 9 (d) 4
- **28.** If the cost of a car is ₹ 10,00,000 and its scrap value after fifteen years is ₹ 1,00,000, then yearly depreciation using straight line method is:
 - (a) ₹ 75,000 (b) ₹ 60,000
 - (c) ₹ 50,000 (d) ₹ 40,000
- 29. Shanky takes a loan ₹ 4,00,000 at an interest of 6% p.a. for 10 years. He wants to pay back in equal monthly installmens. What is his EMI in ₹ amount when calculated by reduced balanced method?

$$\begin{pmatrix} use \frac{0.005}{1 - (1.005)^{-120}} = 0.0111 \\ (a) \ 4444 \qquad (b) \ 6444 \\ (c) \ 4244 \qquad (d) \ 4440 \\ \end{pmatrix}$$

30. The probability distribution of a random variable X is given by:

Х	1	2	3	4	5
P(X)	2K	К	3K	4K	Κ

Then the value of K is:

(a)	$\frac{1}{12}$	(b)	1 11
(c)	1 10	(d)	<u>1</u> 9

- **31.** Pipe A can fill a tank 6 times faster than a pipe B. If B can fill a tank in 21 minutes, then time taken by both the pipes to fill the tank is:
 - (a) 7 minutes (b) 3 minutes
 - (c) 6 minutes (d) 2.5 minutes
- **32.** A particle moves along the curve $y^2 = 16x$. A point on this curve at which the ordinate increases at twice the rate of abscissa is:
 - (a) (4, 1) (b) (8, 2)
 - (c) (2, 3) (d) (1, 4)
- **33.** If the mean and the variance of a binomial distribution are 6 and 4 respectively, then the probability of no success is::

(a)
$$\left(\frac{2}{3}\right)^{18}$$
 (b) $\left(\frac{1}{2}\right)^{18}$
(c) $\left(\frac{1}{3}\right)^{18}$ (d) $\left(\frac{2}{5}\right)^{18}$

34. A simple random sample consists of three observations 7, 9, 11. The point estimate of the population standard deviation is:

(a) 2.5	(b)	1.44
(c) 2	(d)	4

35. A person bought 750 shares of a company quoted at ₹ 320. The amount spent by him on this purchase, if the brokerage be 2.5% is:

(a)	₹ 2,26,000	(b)	₹ 2,46,000

- (c) ₹ 3,36,000 (d) ₹ 2,32,000
- **36.** The differential equation representing the family of curves y = A cos (x + B), where A and B are arbitrary constant is:

(a)
$$\frac{d^2y}{dx^2} + y = 0$$
 (b) $\frac{d^2y}{dx^2} + x = 0$
(c) $\frac{dy}{dx} + y = 0$ (d) $\frac{dy}{dx} + x = 0$

37. If y = x logx, then which of the following is correct?

(a)
$$x \frac{dy}{dx} - x = y$$

(b) $x \frac{dy}{dx} + y = x$
(c) $x \frac{dy}{dx} + xy = x$
(d) $y \frac{dy}{dx} + x = y$
38. The value of determinant $\begin{vmatrix} a - b & b - c & c - a \\ b - c & c - a & a - b \\ c - a & a - b & b - c \end{vmatrix}$ is:

(c)
$$a^2 + b^2 + c^2$$
 (d) 0

39. If a and b are the order and degree of differential

 $x \ge 0$; $y \ge 0,$ then maximum value of the objective function is:

42. The point on the curve $y^2 = 8x$ for which the abscissa and ordinate change at the same rate is:

43. The mean of the following probability distribution is:

- 44. The region represented by the system of inequalities x, y ≥ 0; -2x + y ≤ 4; x + y ≥ 3 and x 2y ≤ 2 is:
 (a) unbounded in first guadrant
 - (b) unbounded in first and second quadrant
 - (c) bounded in first quadrant
 - (d) not feasible
- **45.** Which of the following matrix is not skew symmetric matrix?

(a) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	(b) $\begin{bmatrix} 0 & -3 \\ 3 & 1 \end{bmatrix}$	
	□ 0 1 -2	
$(c) \begin{bmatrix} 0 & -2 \end{bmatrix}$	(d) -1 0 -3	
$\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$		

- **46.** An unbiased die is rolled. If the random variable X is defined as,
- $X = \begin{cases} 1 \text{ if the outcome is a number less than or equal to 3} \\ 0 \text{ if the outcome is a number greater than 3} \\ Then the probability distribution of X is : \end{cases}$

- **47.** Let A, B, C be matrices of order p × k, 3 × k and n × 3 respectively, then the conditions on n, k and p so that AB + CB will be defined are:
 - (a) k = 2, p = 3 (b) k = 3, p = n
 - (c) k = n (d) k is arbitrary, p = 2

48.	$\int \frac{dx}{\sqrt{5-x}} = (\text{where}$	e C is arbitra	ary constant.)
	(a) $\sqrt{5-x} + C$	(b)	$-\sqrt{5-x}+C$

(a) $\sqrt{5-x+C}$ (b) $-\sqrt{5-x+C}$ (c) $2\sqrt{5-x}+C$ (d) $-2\sqrt{5-x}+C$

49.	If $\begin{vmatrix} 3x & 7 \\ 4 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 4 & 2 \end{vmatrix}$, then	the value of x is:	
	(a) ±6	(b) ± 4	
	(c) $4\sqrt{2}$	(d) $4\sqrt{3}$	
50.	 The maximum profit that a company can make i the profit function is P(x) = 41 + 24x – 18x² is: 		

the profit function is P()	() = 4	41 + 24x – 18x² is
(a) 39	(b)	59
(c) 49	(d)	29